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Markov decision processes (MDPs) are standard models for probabilistic systems with non-determi-
nistic behaviors. The mean-payoff objective provides a mathematically elegant formalism to express
performance related properties. The value-iteration (VI) approach provides one of the simplest and
most efficient algorithmic approaches for MDPs with other properties (such as reachability objectives).
Unfortunately, the straightforward VI approach does not work for the mean-payoff objective in MDPs.
In particular, there is no stopping criterion which can give guarantees that the solution obtained through
VI is ε-close to the optimal solution.

In our ongoing work, the contributions are threefold. (i) We refute a conjecture (presented in [4])
related to stopping criteria for mean-payoff objectives in MDPs; (ii) we present two practical algorithms
for the mean-payoff objective in MDPs based on VI; and (iii) we present experimental results showing
that our approach significantly outperforms the standard approaches on several benchmarks.

A core idea which we exploit is the fact that for infinite horizon objectives like mean-payoff, only
rewards which can be obtained in maximal end-components (MECs) of the MDP matter. Keeping this in
mind, we present the following two algorithms.

In the first, we show that a combination of local VI in MECs and VI for reachability objectives can
provide approximation guarantees. The stopping criterion is known [4] for VI in communicating MDPs,
the class of MDPs in which for every pair of two states si and s j, there exists a deterministic strategy
under which si is reachable from s j. We first identify different MECs in the MDP and then use the fact
that a MEC can be identified with a communicating MDP, to run VI on it until the desired precision
is achieved. Next, we collapse these MECs into their representative states and reduce the problem of
solving the mean-payoff objective to a problem of computing the reachability objective on a transformed
MDP. The algorithm presented in [1], which is a version of asynchronous value iteration using sampling,
allows us to compute the reachability objective with the desired guarantees.

In the second, we present an anytime algorithm based on the bounded read-time dynamic program-
ming (BRTDP) approach [3]. In the BRTDP approach, paths are repeatedly sampled in the MDP directed
by a heuristc, and VI is applied only for the states on these paths. Moreover, upper and lower bounds
are maintained for each state and the VI operator is applied on them separately. The difference between
the upper and lower bounds for every state is a natural measure of error. In addition to this standard
approach, we equip our algorithm to detect when a path gets stuck in some end-component, in the lines
of [1]. The end component is then collapsed into a representative state in a collapsed MDP, but unlike
earlier, we do not wait for the stopping criterion to be satisfied while running VI on the end-component.
The core idea of this approach is that if the probability of reaching a state (or a MEC representative
state) is quite low, then we might not need to explore it (or obtain an ε-precise solution in the MEC).
Our algorithm is able to detect when the solution in a MEC needs to be refined. It continues alternating
between propagating bounds in the collapsed MDP and refining the values in the MECs through running
VI locally. Furthermore, the biggest advantage of this algorithm, as in BRTDP, is that not all states need
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to be explored in order to get approximation guarantees.
Finally, we present the results of our benchmark against MultiGain [2], the only tool we are aware

of, which can solve mean-payoff objectives with guarantees. Our results show that depending on the
underlying structure of the MDP, our approaches behave comparable in performance. But on some large
models, the second approach is able to obtain a solution within seconds whereas standard methods runs
out of memory. In every non-trivial example, both our methods significantly outperform the Linear
Programming based approach of MultiGain.

The manuscript of this work has been recently submitted.
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