
Submitted to:
QAPL 2017

c© Y.G. Dantas, T. Hamann, H. Mantel, and J. Schickel
This work is licensed under the
Creative Commons Attribution License.

Extended Abstract:
An Experimental Study of a Bucketing Approach∗

Yuri Gil Dantas
TU Darmstadt

Darmstadt, Germany

Tobias Hamann
TU Darmstadt

Darmstadt, Germany

Heiko Mantel
TU Darmstadt

Darmstadt, Germany

Johannes Schickel
TU Darmstadt

Darmstadt, Germany

<lastname>@mais.informatik.tu-darmstadt.de

1 Introduction
When a secret has influence on the timing of a program, an attacker can measure the execution time of
the program in order to learn some information about the secret. More specifically, this can be done
by sending ordinary inputs to the program and analyzing the time taken to execute the program. Tradi-
tionally, these attacks, namely Timing Side-Channel Attacks [2], are carried out against cryptographic
implementations [2, 13] and web applications [1, 6]. Indeed, there have been several attacks developed
against TLS protocol [2], AES [5] and RSA implementations [11], where researchers demonstrated the
feasibility of fully recovering the secret key.

Although several approaches [3, 14, 12, 8, 7] have been proposed in order to eliminate timing side-
channel attacks, the problem is still not solved, mainly due to practicality and effectiveness reasons. For
instance, implementations based on the static transformation [8] approach are not fully practical due to
the large performance penalty caused by the transformation. Moreover, dynamic transformation [7] is
not always effective as demonstrated in [4].

Eliminating timing side-channel attacks is challenging, as countermeasures should not only elimi-
nate these attacks by reducing the amount of information leakage from the program, but also should be
practical to use. With this in mind, another approach, namely Bucketing [14, 9], has been proposed.
Bucketing is a quantitative approach for reducing timing side-channel attacks by decreasing the number
of possible timing observations, while minimizing the performance penalty. Although Bucketing has
been shown to be sound, it has not been implemented to the best of our knowledge. In this paper, we pro-
vide an implementation of Bucketing at the application level. More concretely, we implement Bucketing
using a runtime enforcement tool and experimentally evaluate the effectiveness of our implementation
for reducing timing side-channel attacks. In summary, the contributions of this paper are two-fold:

• We implement Bucketing at the application level using a runtime enforcement tool. Our imple-
mentation is generic in the sense that it can be applied to any Java program with deterministic
timing behavior, which is a foundational assumption of Bucketing [14].

• We evaluate the effectiveness of our implementation. For this, we carry out several experiments,
with and without using Bucketing. In each experiment, we measure the running time of the pro-
gram for different secret input values. For all experiments, we observed a quantitative reduction
of information leakage from the program when using our implementation.

This paper is organized as follows. Section 2 introduces the concept of Bucketing. Section 3 explains
briefly how we implemented Bucketing using a runtime enforcement tool, and Section 4 contains our
experimental results. Finally, in Section 5, we conclude the paper by discussing future work.

∗This work has been funded by the DFG as part of the project Secure Refinement of Cryptographic Algorithms (E3) within
the CRC 1119 CROSSING.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 An Experimental Study of a Bucketing Approach

2 Bucketing Approach
Bucketing is a quantitative approach that allows one to discretize the execution time of a program in a
way that the results of the computation are only returned at a small number of fixed points in time [14, 9].
That is, Bucketing aims to split all critical output values of a program into buckets such that each output
has to wait until the enclosing bucket’s upper bound time to be released.

input

4

3

2

1

execution

4

3

2

1

b1 b2

tb1 tb2

without bucketing with bucketing

t0 t1t0 t1 t2 t3 t4

execution time
of secret 1

secret

time

input
secret

execution
time

execution time of
secret 1

Figure 1: Illustration of a program’s timing behavior
when releasing sensitive outputs (without Bucketing
on the left and with Bucketing on the right).

Instead of describing the complete detail of
Bucketing, which we refer to [14], we describe its
behavior by means of an example (depicted in Fig-
ure 1). Assume a program that leaks sensitive in-
formation when releasing output events such that
an attacker can make (four) different observations
about the secret just by measuring the response
time of the program. Next, assume that two buck-
ets are defined, b1, with an upper bound time of
tb1 , and b2, with an upper bound time of tb2 , where
the execution time of secret input 1 is allocated
into b1 and secret inputs 2, 3 and 4 into b2. As
a result, whenever this program runs an operation
wrt. secret input 1 (similar for inputs 2, 3, and 4),
the output event will be held by b1 until the execution time reaches tb1 . Considering this scenario, the
number of timing observations are reduced from four to two, and consequently the power of the attacker
to gain information about this secret is also reduced. Moreover, in comparison to static transformation,
Bucketing also keeps the performance overhead of such a program minimal. This can be clearly seen on
the right side of Figure 1, since not all secret inputs were allocated to the worst-case execution time (i.e.
tb2).

3 Bucketing Implementation
We implement Bucketing using a runtime enforcement tool, namely CliSeAu [10]. CliSeAu has a mod-
ular architecture consisting of four components: interceptor, coordinator, enforcer and local policy. For
this particular implementation we just focus on the interceptor and enforcer. Interceptor is a component
that performs the activity of intercepting attempts of the program to perform security-relevant events and
enforcer is a component that enforces a countermeasure on the target program. For instantiating CliSeAu
for Bucketing, one needs to define the sensitive methods (i.e. code that operates on secret data) of the
target program such that CliSeAu can track each call of these methods. Besides, it is also required to
instantiate the enforcer by defining the amount of buckets and their respective sizes.

Program Interceptor Enforcer

intercepts an event

adds the event into the bucket

releases the event from the bucketreleases the event from the bucket

Figure 2: Simplified Diagram of Bucketing imple-
mentation

For the sake of space, we only present the
sequence diagram (depicted in Figure 2) that de-
scribes part of the flow events of our implementa-
tion. Firstly, the interceptor intercepts a security-
relevant event whenever a sensitive method call is
performed by the program. The interceptor sets
the initial time of the event and forwards such
an event to the enforcer. The enforcer can spec-
ify code to execute before and after the security-
relevant event. In our implementation, we specify



Y.G. Dantas, T. Hamann, H. Mantel, and J. Schickel 3

Bucketing for being executed after a security-relevant event such that the enforcer only releases the event
when the upper bound time of the current bucket is reached.

Our Bucketing implementation is generic in the sense that it can be (easily) applied to any Java
program with deterministic timing behavior, which is a foundational assumption of Bucketing. For more
details about CliSeAu’s genericity, we refer to [10].

4 Experiments
Our goal is to experimentally evaluate the effectiveness of our Bucketing implementation upon reducing
timing side-channel attacks. For the sake of simplicity, we have implemented a simplified example of a
client-server application where legitimate clients authenticate (for integrity reasons) their requests into
the server using Message Authentication Code (MAC). For this, both legitimate client and server share
a common secret key, which is required to build a valid MAC for arbitrary requests. In order to verify
a MAC, our server builds its own MAC and compares with the MAC sent by the client. Finally, this
comparison is performed by a string comparison method, where we intentionally add delay in four parts
of the comparison in order to have a clear timing difference between the responses1. As a result, an
attacker can explore this timing difference in order to construct a valid MAC. Our assumption is that if
the time response of an input1 takes longer than an input2 the attacker is closer to guess the correct MAC.

We carry out our experiments as follows. Firstly, we explore the timing side-channel vulnerability of
our server by sending four distinct secret inputs, namely shortest, middle, longest, and correct. The first
three secret inputs (shortest, middle and longest) mean that the first, the middle, and the last character of
the MAC are, respectively, incorrect. Moreover, the correct input means that all characters are correct.
Figure 3a shows the results of this experiments when not using Bucketing. We can clearly observe
differences in the running time values that correspond to four different secret input values. This gives us
a hint that an attacker can adaptively infer the expected MAC value by sending arbitrary MACs.

(a) Running time when Bucketing is not applied (b) Running time when Bucketing is applied

Figure 3: Running time values that correspond to four secret input values

Secondly, we investigate the effectiveness of our implementation upon reducing the timing-side chan-
nel vulnerability in our server. For this, we define two buckets of size 3 and 8 ms with the goal of de-
creasing the power of a potential attacker by reducing her number of timing observations, while taking
performance into account, since only one bucket would suffice, in theory, to eliminate the vulnerability.
Figure 3b depicts the running time values that correspond to four different secret inputs when Bucketing
is applied. On one hand, we can observe that the running time values for the shortest input are always
released at around 3 ms (i.e. the upper bound size of the first bucket). On the other hand, we can observe
that the other three running time values are overlapping at around 8 ms. Therefore, in contrast to 3a,

1This intentional delay simulates programs where the timing differences between the observations are in the range of a few
milliseconds rather than nanoseconds. Attacks on programs in this timing range have been shown in e.g. [6].



4 An Experimental Study of a Bucketing Approach

we cannot observe (much) difference in the running time values that correspond to these three secret
input values. We consider these results promising, as they hint on the fact that our implementation of
Bucketing is indeed effective in reducing the timing side-channel in our server.

5 Summary and Future Work
This paper provides an implementation of Bucketing at the application level, which is built on our tool
for dynamic enforcement of security requirements in Java programs. We carry out a number of experi-
ments for demonstrating its effectiveness. In summary, our experimental results give us a hint that our
implementation is effective to reduce timing side-channel attacks. There are many directions for future
work, e.g., we are currently investigating how precise and accurate our implementation is, i.e. how close
to the actual bucket our implementation releases the information. We are investigating how effective our
implementation is to reduce the capacity of timing side-channels [15]. Finally, we are also interested in
applying our implementation to a more realistic scenario, where we do not make simplifying assumptions
wrt. running time.

References
[1] Martin R. Albrecht & Kenneth G. Paterson: Lucky Microseconds: A Timing Attack on Amazon’s s2n Imple-

mentation of TLS. In: Advances in Cryptology - EUROCRYPT 2016.
[2] Nadhem J. AlFardan & Kenneth G. Paterson: Lucky Thirteen: Breaking the TLS and DTLS Record Protocols.

In: 2013 IEEE Symposium on Security and Privacy, SP 2013.
[3] Aslan Askarov, Danfeng Zhang & Andrew C. Myers: Predictive Black-Box Mitigation of Timing Channels.

In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010.
[4] Michael Backes & Boris Köpf: Formally Bounding the Side-Channel Leakage in Unknown-Message Attacks.

In: Computer Security - ESORICS 2008.
[5] Daniel J. Bernstein (2005): Cache-timing attacks on AES. Technical Report.
[6] Andrew Bortz & Dan Boneh: Exposing private information by timing web applications. In: Proceedings of

the 16th International Conference on World Wide Web, WWW 2007.
[7] Benjamin A. Braun, Suman Jana & Dan Boneh (2015): Robust and Efficient Elimination of Cache and Timing

Side Channels. CoRR abs/1506.00189.
[8] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere & Bjorn De Sutter: Practical Mitigations for Timing-

Based Side-Channel Attacks on Modern x86 Processors. In: 30th IEEE Symposium on Security and Privacy.
[9] Goran Doychev & Boris Köpf: Rational Protection against Timing Attacks. In: IEEE 28th Computer Security

Foundations Symposium, CSF 2015.
[10] R. Gay, J. Hu & H. Mantel (2014): CliSeAu: Securing Distributed Java Programs by Cooperative Dynamic

Enforcement. In: Proceedings of the 10th International Conference on Information Systems Security (ICISS),
LNCS 8880, Springer, pp. 378–398.

[11] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth & Berk Sunar: Cache Attacks
Enable Bulk Key Recovery on the Cloud. In: Cryptographic Hardware and Embedded Systems - CHES 2016.

[12] Emilia Käsper & Peter Schwabe: Faster and Timing-Attack Resistant AES-GCM. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2009.

[13] Paul C. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In:
Advances in Cryptology - CRYPTO ’96.

[14] Boris Köpf & Markus Dürmuth: A Provably Secure and Efficient Countermeasure against Timing Attacks.
In: Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009.

[15] Claude E. Shannon: A mathematical theory of communication. Mobile Computing and Communications
Review, 2001.


	Introduction
	Bucketing Approach
	Bucketing Implementation
	Experiments
	Summary and Future Work

