
1

Pre-Proceedings of

Quantitative Aspects of

Programming Languages and Systems 2017

Uppsala, Sweden, April 23, 2017

2

Preface

This document contains the pre-proceedings of QAPL 2017, the 15th international workshop on Quan-
titative Aspects of Programming Languages and Systems, held on Sunday April 23, 2017 in Uppsala in
the context of ETAPS 2017, the 12th European Joint Conferences on Theory and Practice of Software.

The aim of the QAPL workshops is to discuss new developments on the quantitative evaluation
of systems, with an emphasis on quantitative aspects of computation, broadly construed. The papers
presented at the workshops discuss theory, engineering methodologies, tools, case studies, as well as
experience reports where quantitative properties such as bandwidth, cost, energy, memory, performance,
probability, reliability, security, and time are first-class citizens.

The QAPL 2017 program featured two invited presentations, one by Erika Ábrahám (RWTH Aachen)
entitled Divide and Conquer: Variable Set Separation in Hybrid Systems Reachability Analysis, and by
Andrea Vandin (IMT Lucca) entitled Language-Based Abstractions for Dynamical Systems, completed
by six technical papers and two presentation reports.

The program committee of QAPL 2017 consisted of the following members:

• Alessandro Abate, University of Oxford, UK

• Alessandro Aldini, University of Urbino “Carlo Bo”, IT

• Pedro D’Argenio, Universidad Nacional de Córdoba, AR

• Josée Desharnais, Université Laval, CA

• Alessandra Di Pierro, Universitá di Verona, IT

• Antonio Filieri, Imperial College London, UK

• Jane Hillston, University of Edinburgh, UK

• Jan Křetinský, TU Munich, DE

• Mieke Massink, CNR–ISTI, IT

• David Šafránek, Masaryk University, CZ

• Ana Sokolova, University of Salzburg, AT

• Jiri Srba, Aalborg University, DK

• Marielle Stoelinga University of Twente, NL

• Andrea Turrini, Chinese Academy of Sciences, Beijing, CN

• Erik de Vink, Eindhoven University of Technology, NL

• Herbert Wiklicky, Imperial College London, UK

As workshop co-chairs of QAPL 2017 we are grateful to all who have contributed to make this install-
ment of the QAPL workshop series a success.

Erik de Vink and Herbert Wiklicky, April 2017

1

Programme
09:00 - 10:00 INVITED TALK

Erika Abraham (with Stefan Schupp and Johanna Nellen): Divide and Conquer: Variable Set
Separation in Hybrid Systems Reachability Analysis

10:00 - 10:30 COFFEE BREAK

10:30 - 11:00 PAPER

Sebastian Arming, Ezio Bartocci and Ana Sokolova: SEA-PARAM: Exploring Schedulers in Para-
metric MDPs

11:00 - 11:30 PAPER

Sebastian Kpper, Barbara Knig and Christina Mika: Paws: A Tool for the Analysis of Weighted
Systems

11:30 - 12:00 PAPER

Stephan Brandauer and Tobias Wrigstad: Mining for Safety using Interactive Trace Analysis

12:00 - 12:30 PAPER

Valentina Castiglioni and Simone Tini: Logical Characterization of Trace Metrics

12:30 - 14:00 LUNCH

14:00 - 15:00 INVITED TALK

Andrea Vandin: Language-based abstractions for dynamical systems

15:00 - 15:30 PAPER

Diego Latella and Mieke Massink: Design and Optimisation of the FlyFast Front-end for Attribute-
based Coordination

15:30 - 16:00 COFFEE BREAK

16:00 - 16:30 PAPER

Jacob Lidman and Josef Svenningsson: Bridging static and dynamic program analysis using fuzzy
logic

16:30 - 17:00 PRESENTATION

Yuri Gil Dantas, Tobias Hamann, Heiko Mantel and Johannes Schickel: An Experimental Study of
a Bucketing Approach

17:00 - 17:30 PRESENTATION

Pranav Ashok, Jan Kretinsky, Tobias Meggendorfer, Przemyslaw Daca and Krishnendu Chatterjee:
Mean-payoff objectives for Markov Decision Processes

Submitted to:
QAPL 2017

c© S.Schupp, J.Nellen & E.Ábrahám
This work is licensed under the
Creative Commons Attribution License.

Divide and Conquer: Variable Set Separation in Hybrid
Systems Reachability Analysis∗

Stefan Schupp Johanna Nellen Erika Ábrahám
RWTH Aachen University, Germany

{ stefan.schupp | johanna.nellen | abraham }@cs.rwth-aachen.de

In this paper we propose an improvement for flowpipe-construction-based reachability analysis tech-
niques for hybrid systems. Such methods apply iterative successor computations to pave the reach-
able region of the state space by state sets in an over-approximative manner. As the computational
costs steeply increase with the dimension, in this work we analyse the possibilities for improving
scalability by dividing the search space in sub-spaces and execute reachability computations in the
sub-spaces instead of the global space. We formalise such an algorithm and provide experimental
evaluations to compare the efficiency as well as the precision of our sub-space search to the original
search in the global space.

1 Introduction

The increasing usage of digital control for safety-critical dynamical systems has resulted in an increas-
ing need for formal verification approaches for hybrid systems, i.e., for systems with mixed discrete-
continuous behaviour, which are often modelled as hybrid automata. Due to intensive research, nowa-
days several approaches and tools exist for the reachability analysis of hybrid automata. As the reachabil-
ity problem for hybrid automata is in general undecidable, most approaches compute an over-approxima-
tion of the set of states that are reachable in a given hybrid automaton model. Due to the over-approxima-
tion, these techniques can be used to prove the safety of system models, i.e., the fact that a given set of
unsafe states is not reachable in the model, but they cannot be used to prove unsafety.

In this work we focus on flowpipe-construction-based reachability analysis techniques. These tech-
niques use certain data types to represent state sets, whereas each representation has its strengths and
weaknesses in terms of precision, memory requirements, and efficiency of certain operations on them
which are needed for the reachability computations. The reachability analysis starts from an initial state
set and iteratively over-approximates successors by further state sets. For a given set of states, the suc-
cessors via a discrete computation step (jump) are over-approximated by a single set, the successors via
time evolution (the so-called flowpipe) are covered in an over-approximative manner by a sequence of
state sets.

Unfortunately, these successor computations often lead to either strong over-approximations or high
computational costs. Though state-of-the-art tools like SPACEEX [7], FLOW∗ [4], or HYPRO [19] can
already successfully verify a wide range of challenging applications, they still have problems to anal-
yse large models with complex behaviour. Such models arise for example from applications, where a
physical or chemical plant is controlled by a discrete controller. Our focus is on digital control by pro-
grams running on programmable logic controllers (PLCs). To build a formal model of such a system, the
PLCs, the programs running on them, the dynamic plant behaviour, and the interactions between these

∗This work was partially supported by the German Research Council (DFG) in the context of the HyPro project.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Variable separation for hybrid systems reachability

components can be modelled by a hybrid automaton, to which available reachability analysis tools can
be applied. For practically relevant systems, however, the size of the resulting composed models often
exceeds the capabilities of state-of-the-art tools.

Whereas general techniques to increase the scalability of reachability analysis are hard to develop,
for dedicated model types there might be some hot spots. Models of PLC-controlled plants have some
specific properties we can exploit: Firstly, they possess a relevant number of discrete variables. Sec-
ondly, some actions are triggered by deadlines, modelled by the values of clocks along with correspond-
ing thresholds. Thirdly, the evolution of some physical quantities might depend on the time linearly,
others not. In standard reachability analysis, these model parts are handled uniquely. In this paper
we propose to split the state space into several sub-spaces, between which the dependence is loose
enough to execute successor computations independently. Though this procedure leads to additional
over-approximation, the error can be reduced. Furthermore, we show on some experiments that this
additional over-approximation is often minor and is well compensated by the reduced computational
requirements.

We are aware of the work [5] that is closely related to the work described in this paper. The authors
of [5] also use variable set separation and computations in sub-spaces, but with two main differences. On
the one hand, the work [5] is more general as they allow also closer dependencies between the sub-spaces
than we can support. On the other hand, their work is restricted to Taylor models, whereas our approach
is applicable to any state set representation type.

Overview After providing some preliminaries in Section 2 and a description of our HYPRO pro-
gramming library in Section 3, in Section 4 we describe our method for the separation of variable dimen-
sions and the modified reachability algorithm. We provide some experimental results in Section 5 before
we conclude the paper in Section 6.

2 Preliminaries

Hybrid automata For a given set X = {x1, . . . ,xd} of variables let PredX be the set of all quantifier-
free arithmetic predicates with free variables from X , using the standard syntax and semantics over the
real domain. We use the notation Ẋ = {ẋ1, . . . , ẋd} to represent first derivatives and X ′ = {x′1, . . . ,x′d} to
represent the result of discrete resets of variable values. Sometimes we also see the variable space as the
d-dimensional real space and use the vector notation x = (x1, . . . ,xd) ∈ Rd .

Definition 1 ([10]). A hybrid automaton H = (Loc,X ,Flow, Inv,Edge, Init) is a tuple specifying

• a finite set Loc of locations or control modes;

• a finite ordered set X = {x1, . . . ,xd} of real-valued variables, where d is the dimension of H ;

• for each location its flow or dynamics by the function Flow : Loc→ PredX∪Ẋ ;

• for each location an invariant by the function Inv : Loc→ PredX ;

• a finite set Edge ⊆ Loc×PredX ×PredX∪X ′ × Loc of discrete transitions or jumps. For a jump
(l1,g,r, l2) ∈ Edge, l1 is its source location, l2 is its target location, g specifies the jump’s guard,
and r its reset function;

• an initial predicate for each location by the function Init : Loc→ PredX .

In this paper we consider only autonomous linear hybrid automata whose initial conditions, invari-
ants and jump guards are linear and can be written in the form Ax ≤ b (where x = (x1, . . . ,xd) are the

S.Schupp, J.Nellen & E.Ábrahám 3

model variables, A is a d× d matrix and b a d-dimensional vector), whose jump resets are also linear
and can be written as x′ = Ax, and whose flows are defined by conjunctions of linear ordinary differ-
ential equations (ODEs), which can be written1 as ẋ = Ax. Note that such automata allow only linear
predicates, whose solutions are convex polytopes.

A state (l,x) ∈ Loc×Rd of a hybrid automaton specifies the location l ∈ Loc in which the control
resides and the current values x ∈ Rd of the variables. For p ⊆ Rd , by (l, p) we denote the state set
{(l,x) | x ∈ p}. An execution (l0,x0)

t0→ (l1,x1)
e1→ (l2,x2)

t2→ . . . of a hybrid automaton starts in an
initial state (l0,x0) such that x0 satisfies Init(l0), and executes a sequence of alternating continuous and
discrete steps. A continuous step (li,xi)

ti→ (li+1,xi+1) with li = li+1 models time evolution: starting from
xi, the variable values evolve according to the flow (ODEs) Flow(li) of the current location for ti time
units, where the location’s invariant must hold during the whole duration of the step. A discrete step
(li,xi)

ei→ (li+1,xi+1) typically models controller execution: if the source of a jump ei is li, the guard of ei

is satisfied by xi, the reset predicate of ei is satisfied by (xi,xi+1), and li+1’s invariant is true for xi+1 then
the jump ei can be taken, moving the control from li to li+1 with resulting variable values xi+1.

A state of a hybrid automaton H is called reachable if there is an execution leading to it. Given a
set T of unsafe states, H is called safe if no state from T is reachable in H .

Hybrid automata can be composed using parallel composition, which we do not define here formally.
Intuitively, jumps in different components can be synchronised (using synchronisation labels) if they
should take place simultaneously, whereas local computation steps can also be executed in isolation;
time evolves simultaneously in all components.

Reachability analysis The reachability problem for hybrid automata is the problem to decide whether
a given state (or any state from a given set) is reachable in a hybrid automaton. As the reachability
problem for hybrid automata is in general undecidable, some approaches aim at computing an over-
approximation of the set of reachable states of a given hybrid automaton. We focus on approaches based
on flowpipe construction, which iteratively over-approximate the set of reachable states by the union of
a set of state sets. To represent a state set, typically either a geometric or a symbolic representation is
used. Geometric representations specify state sets by geometric objects like boxes, (convex) polytopes,
zonotopes, or ellipsoids, whereas symbolic representations use, e.g., support functions or Taylor models.
These representations might have major differences in the precision of the representation (the size of
over-approximation), the memory requirements and the computational effort needed to apply operations
like intersection, union, linear transformation, Minkowski sum or test for emptiness. For example, boxes
perform well in terms of computational effort for set operations, but usually introduce a large over-
approximation error. Thus the choice of the representation is a compromise between the advantages and
disadvantages regarding these measures.

Before the reachability analysis starts, all predicates ϕ ∈ PredX in the respective linear hybrid au-
tomaton (initial predicates, invariants, jump guards) as well as the unsafe state set need to be represented
in some state set representation (usually the same representation for all predicates). Furthermore, the
jump resets need to be formalised as linear transformations.

For a given state set p, flowpipe-construction-based approaches compute the successors of the states
from p by first over-approximating the set of states reachable via time evolution (flowpipe) and afterwards
the set of states reachable from the flowpipe as jump successors. Time evolution is usually restricted to
a time horizon (either per location or for the whole execution), which is divided into smaller time steps.
The states reachable from p via one time step are over-approximated by a state set p1, for which again

1Note that ODEs of the form ẋ = Ax+b can be also encoded without a b component on the cost of new variables with zero
derivatives. A similar approach is possible for jump resets of the form x′ = Ax+b.

4 Variable separation for hybrid systems reachability

the time successors p2 via one time step are computed. This procedure is repeated until the time horizon
is reached or the successor set gets empty (due to the violation of the current location’s invariant). The
union of the resulting state sets p1, . . . , pk, which are called flowpipe segments, over-approximates the
flowpipe. For each outgoing jump and each of the flowpipe segments the jump successors are computed,
to which the above procedure is applied iteratively until a given upper bound (jump depth) on the number
of jumps is reached or until a fixed point is detected. Thus the reachability computation results in a search
tree with state sets as nodes. In order to reduce the computational effort, clustering and aggregation can
be applied to over-approximate the successors of the flowpipe segments for a given jump by a fewer
number of segments respectively by a single state set.

Programmable logic controllers Programmable logic controllers (PLCs) are digital controllers widely
used in industrial applications, for instance in production chains. A PLC has input and output pins that
are connected with the sensors and the actuators of a plant. Control programs running on a PLC spec-
ify the output of the PLC in dependence of its input. These control programs are executed in a cyclic
manner. First, the PLC reads the current state of the sensors and the actuators of the plant and stores
this information in input registers. Next all programs on the PLC execute in parallel to compute the next
output values based on the last input, and store the results in some output registers. These computations
might use local variables, stored in some local registers. In the last step of the cycle the PLC writes the
computed output values to the output pins that are connected to the actuators of the plant. In contrast to
some implementations that assure a cycle duration within a time interval, for simplicity in this work we
assume a constant cycle time (however, our approach can be easily extended to interval durations).

To model a plant we introduce variable sets Vcont,Vact, and Vsen to represent the state of physical
quantities, the actuators, respectively the sensors (see left of Figure 1). For the modelling of a controller
we use sets Vin, Vout, and Vloc of variables to represent the PLC registers for input, output respectively
local variables. Additionally, we need one variable (clock) per PLC to account for the PLC cycle time.

A schematic overview of the hybrid automaton we use to model PLC-controlled plants is shown
in the right of Figure 1. We could model the system by specifying hybrid automata models for the
plant, the PLC, and the programs running on the PLC, and compose them using label synchronisation to
model synchronous events in the PLC cycle. However, these models allow heavy interleaving between
continuous time evolution and discrete PLC computation steps, leading to models that pose a challenge
for reachability analysis tools. Therefore, we make use of the fact that the PLC execution between
reading the input and writing the output has no influence on the plant’s state: we model the plant evolution
and the concurrent cyclic PLC execution by toggling between a controller model and a plant model,
assuming that all controller actions are executed instantaneously after the input is read, the plant evolves
for the duration of the PLC cycle, and the output is written at the end of the cycle. We refer to [18] for
more information on the modelling of PLC-controlled plants.

3 The HyPro Library

As mentioned before, there are several state set representations that can be used in flowpipe-construction-
based reachability analysis algorithms. Hybrid systems reachability analysis tools like, e.g., CORA [1],
FLOW∗ [4], HYCREATE [11], HYREACH [13], SOAPBOX [9], and SPACEEX [7] implement different
techniques using different geometric or symbolic state set representations, each of them having individual
strengths and weaknesses. For example, SPACEEX uses support functions, whereas FLOW∗ makes use
of Taylor models.

S.Schupp, J.Nellen & E.Ábrahám 5

Actuators
Vact

Sensors
Vsen

Physical
quantities

Vcont

Plant PLC Programs
Input
Vin

Output
Vout

Computation
Vloc

read

write

Controller

Plant

Figure 1: PLC controller: Interface between plant and controller (left) and cyclic execution model (right).

da
ta

st
ru

ct
ur

es

H
yb

ri
d

au
to

m
at

on
Po

in
t

H
al

fs
pa

ce

ut
il

algorithms

re
pr

es
en

ta
tio

nsBox
HPolytope

VPolytope

PPL-Polytope

Zonotope

Support function

Orthogonal polyhedra

Taylor model

GeometricObject

<Interface> Converter

Plotter

Logger

Parser

Reachability
analysis

Optimizer

GLPK SMTRAT Z3 SOPLEX

Figure 2: HYPRO class structure [19].

The implementation of state set representations is tedious and time-consuming, and impedes the
(even prototypical) implementation of new reachability analysis algorithms. To offer assistance for rapid
implementation, we developed a free and open-source C++ programming library HYPRO [19] (see Fig-
ure 2), which we will use in our experiments and which is published at https://github.com/hypro/
hypro. HYPRO contains implementations for several state set representations such as boxes [16], con-
vex polytopes [21], zonotopes [8], support functions [14], orthogonal polyhedra [3], and Taylor models
[4], different operations on them which are needed for the implementation of flowpipe-construction-
based reachability analysis algorithms, and conversions between the different representations. Reduction
techniques can be applied to reduce the representation sizes on the cost of additional over-approximation.

The implemented representations (with the exceptions of orthogonal polyhedra and Taylor models,
depicted grey in Figure 2) share a unified interface to allow the usage of different representations within a
single algorithm. This property is not only important for extensibility with new representations but also,
e.g., for the implementation of counterexample-guided abstraction refinement (CEGAR) algorithms: the
search can start with a low-precision but computationally cheap representation such as boxes, and it can
be refined along paths that are detected to be potentially unsafe by switching to a high-precision but
computationally more expensive representation.

Another important feature of HYPRO is that it is templated in the number type, such that it can be
instantiated both with exact as well as with inexact arithmetic. Linear solver backends such as GLPK

https://github.com/hypro/hypro
https://github.com/hypro/hypro

6 Variable separation for hybrid systems reachability

[15], SMTRAT [6], SOPLEX [20], and Z3 [17], which are needed for the implementation of different
operations and conversions, can be exchanged by the user by her tool of choice. The library is thread-
safe, thus parallelisation can be exploited by the user. The efficient usage of the library is further eased
by a model parsing module, a plotting engine, and various debugging tools.

In this work we illustrate the advantages of the HYPRO library by proposing an algorithm to reduce
the computational effort of the search on the cost of precision loss. Due to space restriction, we do not
discuss refinement steps in this paper, but mention here that using HYPRO the proposed method can be
embedded into a CEGAR approach: if a potentially unsafe path is detected, more precise analysis can be
used to check safety along those paths.

4 Reachability Analysis based on Variable Set Separation

Variable set separation and projective representation For practically relevant applications, the pre-
viously described modelling approach for PLC-controlled plants by hybrid automata leads to huge mod-
els, even if we exploit the mentioned reduction by restricted interleaving. The most serious problem
is the high dimensionality: the variable set contains variables modelling the plant dynamics, the states
of sensors and actuators, the input and output values of the PLC, the local variables used in program
executions, and clocks for PLC cycle synchronisation. The high dimensionality leads to complex state
set representations, causing heavy memory consumption and computationally expensive applications of
state set operations during the reachability analysis.

To increase scalability and thus to allow the analysis of larger models, we start with some obser-
vations. Firstly, the variables of the PLC are discrete and thus their values do not change dynamically
during time evolution but only upon taking a discrete transition in the controller part of the composed
hybrid automaton. Furthermore, the states of actuators and sensors can be modelled by discrete variables,
as actuator states change discretely (when writing the output) and the sensor values are relevant only at
the beginning of each cycle (read plant state) as depicted in Figure 1. Thus only the physical quantities
and the cycle clocks evolve continuously. Finally, computing flowpipes for clocks and other variables
with constant derivatives can usually be done easier than for dynamics specified by general ODEs.

These observations gave us the idea to divide the variable set X into several disjoint subsets X = X1∪
. . .∪Xn such that variables in the same subset Xi have some common properties relevant for reachability
analysis. Once the variables are classified this way, we could try to modularise the reachability analysis
computation by computing in the sub-spaces defined by the variable subsets, instead of computing in
the global space. However, in order to compute reachability in the sub-spaces, the variables in different
subsets must be independent in the sense that their evolutions do not directly influence each other. To
be more formal, all predicates ϕ ∈ PredX in the hybrid automaton definition must be decomposable to a
conjunction ϕ =ϕ1∧ . . .ϕn of predicates ϕi ∈PredXi over the respective variable subsets Xi, and similarly
for jump resets from PredX∪X ′ and flows from PredX∪Ẋ . If this condition holds then we call the subsets
X1, . . . ,Xn themselves as well as variables from two different subsets syntactically independent.

Such a classification of the variable set X into syntactically independent subsets X1, . . . ,Xn allows
us to represent (global) state sets (l, p) ⊆ Loc×Rd by their projections p ↓Xi= pi ⊆ R|Xi| to the sub-
spaces; we call (l, p1, . . . , pn) the projective representation of (l, p) with respect to the variable separation
X1, . . . ,Xn. Note that the projective representation drops the connection between the sub-spaces and is
therefore over-approximative, i.e., p ⊆ p1× . . .× pn but in general p 6= p1× . . .× pn. One exception
is the state set representation by boxes: the cross product of the projections of a box is the box itself,
therefore the projective representation of boxes is exact.

S.Schupp, J.Nellen & E.Ábrahám 7

Reachability computation based on variable set separation Given a separation of the variable set
X into syntactically independent subsets X1, . . . ,Xn and projective representations based on this separa-
tion, we can over-approximate successors of a state set (l, p) by computing successors of its projective
representation (l, p1, . . . , pn) in each sub-space modularly. As the computational effort for reachability
analysis heavily increases with the dimension, this modular approach will help to reduce the running
time. To explain why we need syntactical independence for sub-space computations, we first need a
more formal description of how successor sets are computed:
(1) Reachability analysis computes for an initial set (l, p) the first flowpipe segment (l,Ω0) that over-
approximates all states reachable from p within a time interval [0,δ] in l as Ω0 = (conv(p∪eδA p)⊕B)∩
Inv(l), where the flow in location l is ẋ = Ax, eδA is the matrix exponential for δA, eδA p are the states
reachable from p at time point δ , conv(·) is the convex hull operator, S1⊕S2 = {a+b | a ∈ S1∧b ∈ S2}
is the Minkowski sum of two sets, the bloating with the box B accounts for the non-linear behaviour
between the time points 0 and δ , and Inv(l) is the invariant for location l.
(2) Flowpipe segments (l,Ωi) over-approximating the flowpipe within the time interval [iδ ,(i+1)δ] for
i > 0 are computed by Ωi = eδAΩi−1∩ Inv(l).
(3) For each jump e with source l, guard g, reset x′ = A′x and target location l′, each flowpipe segment Ωi

is checked for possible successors along e by checking (A′(Ωi∩g))∩ Inv(l′) for emptiness. Non-empty
successors are collected, possibly aggregated, and considered as initial state set(s) for location l′.

For each decomposition of X into syntactically independent variable sets X1, . . . ,Xn, any flow ẋ = Ax
can be decomposed into ∧n

i=1Ẋi = AiXi (where we overload the notation Xi to also denote the sequence of
variables in Xi). Similarly, Inv(l) =∧n

i=1Inv(l)i with Inv(l)i ∈ PredXi . Furthermore, let Bi =B ↓Xi be the

x

y

g

x

y

g

Figure 3: Intersection of a flowpipe seg-
ment with an invariant using global (left)
and separated (right) variable sets.

projection of B to Xi. Let (l, p0, . . . , pn) be the projective
representation of a state set p,

Ω0,i = (conv(pi∪ eδAi pi)⊕Bi)∩ Inv(l)i

and for each j > 0

Ω j,i = (eδAiΩ j−1,i⊕Bi)∩ Inv(l)i .

Then Ω j ⊆Ω j,1× . . .×Ω j,n.
The computations in the sub-spaces are precise as long

as the initial set p is a box and the flowpipe resides inside
the invariant, i.e., if p is a box and Ωm,i ⊆ Inv(l)i for all
1≤ m≤ j and all 1≤ i≤ n then Ω j ↓i= Ω j,i.

However, syntactical independence does not imply semantical independence, as the different di-
mensions are usually still implicitly connected by the passage of time. If one of the projections runs
out of a non-trivial invariant then the intersection with the (projection of the) invariant in a sub-space
does not necessarily affect the computations in the other sub-spaces, thus the result might become over-
approximative (see Figure 3). To increase precision, we can at least incorporate that if the projection of
a flowpipe segment gets empty in one of the sub-spaces then the whole flowpipe segment gets empty:
instead of Ω j,i we use Ω′j,i that is Ω j,i if none of Ω j,k, k = 1, . . . ,n is empty and the empty set otherwise.

For successors along jumps, the reachability computations in the sub-spaces work similarly. Also
here, additional over-approximation might be introduced by intersections with guards and invariants in
target locations, which we try to reduce by the above-described emptiness check.

As we use modular computations in sub-spaces, on the one hand our method speeds up reachability
computations, but on the other hand it introduces additional over-approximations. Therefore, in our ex-
periments we will thoroughly analyse the effect of our approach both to the running time as well as to the

8 Variable separation for hybrid systems reachability

over-approximation error. Besides the reduced computational effort, our method has further advantages.
For example, state sets in the sub-spaces can be represented independently of each other, using differ-
ent state set representations. We observed that the discrete variables can often be represented by boxes
without serious over-approximation, whereas the plant dynamics requires a more precise representation,
e.g. by support functions. Furthermore, for sub-spaces defined by clocks or by variables with constant
derivatives one could use different, computationally less expensive techniques for computing flowpipes.

The algorithm Our reachability analysis algorithm based on variable set separation is presented in
Algorithm 1. The input is a hybrid automaton H, a parameter δ that specifies the length of a time step
in the flowpipe construction, a global time horizon T and a jump depth D that specify upper bounds on
the total time duration respectively on the total number of jumps in the considered execution paths, and
an aggregation flag that specifies whether aggregation should be applied to the successors of segments
of a flowpipe along a jump. The algorithm outputs a set of flowpipe segments R, where the union of the
segments in R is an over-approximation of the set of states that are reachable in H within the given time
and jump bounds.

In a preprocessing step, we separate the variable set into three syntactically independent subsets of
discrete variables, clocks, and the rest (lines 2-4). We have chosen this variable set separation as it seems
to be practically helpful in our experiments, but other separation criteria could be defined, too. A state set
representation can be chosen for each sub-space independently (line 5); for readability, in the algorithm
we do not distinguish between state sets and their representations syntactically.

The invariant conditions for the initial states are checked for each initial set and each sub-space
independently in the lines 8-13 and if the intersections of the initial sets with the invariants are non-empty
in all sub-spaces then they are added to a set P of state sets, whose successors need to be determined.
Additionally to the location and the projective representation of state sets, we attach to the state sets the
time interval within which the represented states can be reached.

As long as P is not empty, we choose a state set p ∈ P. Before computing its flowpipe, we determine
the set of jumps with p’s location as source. As the values of discrete transitions do not change during
time evolution, we can skip those jumps whose guard is violated by the initial values of the discrete
variables, and store the remaining ones in the set E (line 16). The sets Pe will be used to collect non-
empty successors from different flowpipe segments along the jumps e ∈ E.

Next we compute the segments of p’s flowpipe as explained previously (lines 19-23). Instead of one
single flowpipe of dimension d, our algorithm computes lower-dimensional flowpipes in the sub-spaces
using a common time step size and a global time horizon (line 19) to be able to connect the flowpipe
segments computed in the sub-spaces. The variable isFirst, initialised in line 17, is used to remember
whether the flowpipe segment to be computed next is the first one (as the first one needs special handling).

Once the flowpipe segments are computed, their jump successors are determined and collected in the
sets Pe for each outgoing jump e ∈ E (lines 25-29), if aggregation is activated then they are aggregated
(per jump, line 34), and finally added to P for further iterative successor computation. Note that the flow-
pipe as well as the jump successor computations in the sub-spaces are time-synchronised: if a successor
set gets empty in one of the sub-spaces then the computation is stopped.

5 Experimental Results

All computations were carried out on an Intel Core i7 CPU with 8 cores and 16 GB RAM. We used the
time step size δ = 0.01 and unlimited jump depth. To be able to express a global time horizon, each
model is equipped with a global clock.

S.Schupp, J.Nellen & E.Ábrahám 9

1

Input: Hybrid system model H = (Loc,X ,Flow, Inv,Edge, Init), time step δ ∈ Q≥0, global time horizon
T ∈Q≥0, jump depth D ∈ N≥0, aggregation flag aggregation ∈ {0,1}.

Output: An over-approximation {(l,x)|(l, pdisc, pclock, prest, [t1, t2])∈R∧x∈ pdisc× pclock× prest} of the states
reachable within the given bounds.

2 Xdisc := maximal set of variables from X with derivatives 0 that are syntactically independent from X \Xdisc;
3 Xclock := maximal set of variables from X with derivatives 1 that are syntactically independent from X \Xclock;
4 Xrest := X \ (Xdisc∪Xclock);
5 choose a representation type for each of Xdisc, Xclock, and Xrest;
6 bring each predicate ϕ in H to an equivalent form ϕdisc∧ϕclock∧ϕrest, where each ϕi, i ∈ {disc,clock,rest},

is a predicate from PredXi resp. PredXi∪X ′i (jump resets) resp. PredXi∪Ẋi
(flows);

7 P := /0; R := /0;
8 foreach location l ∈ Loc do
9 let pi := Init(l)i∩ Inv(l)i for each i ∈ {disc,clock,rest};

10 if pdisc 6= /0∧ pclock 6= /0∧ prest 6= /0 then
11 add (l, pdisc, pclock, prest, [0,0]) to P
12 end
13 end
14 while P 6= /0 do
15 choose p = (l, pdisc, pclock, prest, [t1, t2]) ∈ P and remove p from P;
16 E := {(e, pe

disc) | e = (l,g,r, l′) ∈ Edge∧ pe
disc = jump(pdisc,gdisc,rdisc, Inv(l′)disc) 6= /0};

17 isFirst := true; foreach (e, pe
disc) ∈ E do Pe := /0 ;

18 while true do
// Compute flowpipe, considering also the invariant of the location

19 if t1 < T then
20 pclock := flow(pclock,Flow(l)clock, Inv(l)clock,δ , isFirst); if pclock = /0 then break;
21 prest := flow(prest,Flow(l)rest, Inv(l)rest,δ , isFirst); if prest = /0 then break;
22 t2 := t2 +δ ; if ¬isFirst then t1 := t1 +δ ;
23 end
24 R := R∪{(l, pdisc, pclock, prest, [t1, t2])};

// Compute jump successors

25 foreach ((l,g,r, l′), pe
disc) ∈ E do

26 pe
clock := jump(pclock,gclock,rclock, Inv(l′)clock); if pe

clock = /0 then continue;
27 pe

rest := jump(prest,grest,rrest, Inv(l′)rest); if pe
clock = /0 then continue;

28 add (l′, pe
disc, pe

clock, pe
rest, [t1, t2]) to Pe;

29 end
30 isFirst := false; if t1 ≥ T then break;
31 end
32 foreach e ∈ E do
33 if Pe 6= /0 then
34 if aggregation then P := P∪{aggregate(Pe)}; else P := P∪Pe

35 end
36 end
37 end
38 return R
Algorithm 1: Reachability analysis algorithm based on variable set separation for hybrid automata.

10 Variable separation for hybrid systems reachability

Table 1: Model sizes of the benchmarks.
Benchmark Type #variables #modes #jumps

disc. clocks rest controller plant

Leaking tank

original 0 0 12 8 3 34
timed 0 2 10 8 3 34

discrete 9 0 3 8 3 34
timed & discrete 9 2 1 8 3 34

Two tanks

original 0 0 22 20 14 296
timed 0 3 19 20 14 296

discrete 17 0 5 20 14 296
timed & discrete 17 3 2 20 14 296

Thermostat

original 0 0 8 6 2 18
timed 0 2 6 6 2 18

discrete 5 0 3 6 2 18
timed & discrete 5 2 1 6 2 18

Benchmarks For our experiments we used three well-known benchmarks, which we slightly modi-
fied by adding model components for PLC controllers. Besides increasing the number of modes, these
extensions add variables with discrete behaviour (i.e. with zero derivatives) to model the actuators and
sensors of the plant and the input, output, and local variables of the controller. Furthermore, one clock
variable is added for each introduced PLC controller to model the cycle time, and one discrete variable to
store the controller mode. In our experiments we compare the analysis of the benchmarks without vari-
able separation (“original”) with variable-set-separation-based analysis separating only clocks (“timed”),
only discrete variables (“discrete”), and both (“timed & discrete”). The sizes of the models are shown
in Table 1. The modified versions of the benchmarks are accessible as part of our benchmark collection
[2]. A binary of our implementation can be found at [12].

Leaking tank This benchmark models a water tank which leaks, i.e., it has a constant outflow. The
tank can be refilled from an unlimited external resource with a constant inflow that is larger than the
outflow. The PLC controller triggers refilling (by switching a pump on) if a sensor indicates a low
water level (h ≤ 6). If the water level is high (h ≥ 12) the controller stops refilling (switches the pump
off). Adding the controller introduces two controller input variables for low and high water levels,
variables for the actuator (pump) state in the plant and the controller, and a variable to store the controller
mode. Furthermore, a new clock is added to model the PLC cycle time. Besides the controller we also
model a user which can manually switch the pump on and off as far as the water level allows it. In our
implementation, the user constantly toggles between the pump states on and off. We analyse the system
behaviour over a global time horizon of 40 seconds using a PLC cycle time of 2 seconds.

Two tanks This benchmark models the water levels of two water tanks in a closed system. Each tank
has a constant inflow and a constant outflow. The tanks are connected via pipes, such that the amount
of water outflow of the first tank is equal to the inflow of the second tank and vice versa. One pump per
pipe allows to enable/disable the water flow. We add a controller to the two tank system that controls the
pumps. A pump is switched off if the water level of the source tank is low (h ≤ 8) or if the water level
of the target tank is high (h≥ 32). Each time a pump is switched off by the controller, the other pump is
switched on to balance the water levels in the tanks. The introduction of the controller adds variables to
model sensing low and high water levels of both tanks and variables to model the actuator (pump) states
in the plant and the controller. Moreover, we add a variable to store the controller mode and a new clock

S.Schupp, J.Nellen & E.Ábrahám 11

Table 2: Benchmark results for different separation set-ups. Running times are in seconds, time-out (TO)
was 20 minutes, in brackets we list the number of flowpipes computed.

HYPRO SPACEEX

Benchmark Rep. Agg original timed discrete timed & discrete original

Leaking tank

box agg 2.70 (662) 2.08 (662) 1.06 (662) 1.13 (662) 3.67 (200)
box none 2.62 (662) 2.09 (662) 1.06 (662) 1.13 (662) 3.82 (200)
sf agg TO (18) TO (28) 161.12 (662) 37.03 (662) 448.3 (425)
sf none TO (583) 1044.97 (662) 19.49 (662) 5.84 (662) 444.82 (425)

Two tanks

box agg 4.39 (470) 2.60 (470) 0.97 (470) 1.15 (470) 5.49 (195)
box none 4.46 (470) 2.68 (470) 1.02 (470) 1.16 (470) 5.53 (195)
sf agg TO (4) TO (4) 900.11 (470) 329.80 (470) TO (171)
sf none TO (54) TO (64) 35.04 (470) 14.64 (470) TO (172)

Thermostat

box agg 0.07 (95) 0.09 (95) 0.06 (95) 0.06 (95) 0.57 (95)
box none 0.11 (95) 0.09 (95) 0.06 (95) 0.06 (95) 0.57 (95)
sf agg 35.87 (95) 22.69 (95) 1.17 (95) 0.29 (95) 9.89 (84)
sf none 30.41 (95) 20.19 (95) 1.18 (95) 0.30 (95) 9.91 (84)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 5 10 15 20 25 30 35 40

HyPro oct timed
HyPro oct discrete

SpaceEx oct.

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 23 23.5 24 24.5 25

HyPro oct timed
HyPro oct discrete

SpaceEx oct.

Figure 4: SPACEEX and HYPRO results on the leaking tank benchmark with support function representa-
tion (using a regular octagonal (oct) template for evaluation), when HYPRO separates either only clocks
or only discrete variables.

to model the PLC cycle time. Again, we model a user which switches the pumps manually on or off as
far as the water levels allow it. We implemented a user that toggles the state of each pump in each PLC
cycle. The global time horizon and a PLC cycle time were set to 20 seconds respectively 1 second.

Thermostat In this benchmark a heater with a thermostat controller is modelled. Initially, the tempera-
ture is T = 20◦C and the heater is on. The controller keeps the temperature T between 16◦C and 24◦C.
The heater is switched off if the temperature rises above 23◦C and it is switched on at a temperature
below 18◦C. Adding a controller to the model introduces new variables for the low and high temperature
sensors in the controller, a variable for the actuator (heater) state in the plant and the controller, and a
variable to store the controller mode. Additionally, we introduce a new clock for the cycle time of the
PLC. The global time horizon is 10 seconds and the PLC cycle time is 0.5 seconds.

Results We implemented our algorithm using the HYPRO library and evaluated it on the above bench-
marks. Table 2 shows results from our tool and SPACEEX version 0.9.8f. In our tool we used boxes
and support functions (evaluated in 8 directions) to represent state sets, whereas in SPACEEX we used
support functions with 4 and 8 directions, as SPACEEX does not support explicit box representations.

12 Variable separation for hybrid systems reachability

The HYPRO and SPACEEX results are not fully comparable because SPACEEX implements a fixed-
point detection algorithm but HYPRO does not. The leaking tank benchmark as well as the two tank
benchmark both cause branching in the execution paths which are merged later (see Figure 4). Our
implementation does not recognise the merging of these paths and fully computes each branch inde-
pendently. Thus HYPRO needs to compute a higher number of flowpipes (given in brackets behind the
running times in Table 2) than SPACEEX. Another difference is that in HYPRO we varied the state set
representation for the continuous sets between boxes and support functions (similarly to SPACEEX) but
used boxes for the discrete and the clock variable sets in all settings.

 16

 17

 18

 19

 20

 21

 22

 23

 24

 0 2 4 6 8 10

HyPro oct. timed discrete
HyPro oct.

SpaceEx oct.

Figure 5: SPACEEX and HYPRO results on the ther-
mostat benchmark with support function represen-
tation (using an octagonal (oct) template for eval-
uation), when HYPRO separates clocks as well as
discrete variables.

Using variable separation clearly improves the
running times, due to computations in lower-
dimensional sub-spaces. However, we can also
observe on the Figures 4 and 5, which show plots
for the detected reachable regions for the leak-
ing tank and the thermostat, that separating the
clock variables (which measure the cycle time
and the global time) introduces a slight over-
approximation.

The influence of the discrete variable separa-
tion is in general larger than the influence of a
clock separation, probably because in our bench-
marks the discrete variables outnumber the clocks.
Nonetheless a separation of clocks already shows
a speed-up of about 30%. As mentioned before,
we used boxes as a state set representation for the
set of discrete variables, which does not introduce
any further over-approximation error, as the discrete variables themselves are all syntactically indepen-
dent. We can observe that using boxes as a state set representation, our implementation outperforms
SPACEEX (even when a lot more flowpipes are computed), which is expected, as boxes in general re-
quire less computational effort than support functions (evaluated in 4 directions) in reachability analysis.

In HYPRO, aggregation causes longer running times because in the current implementation aggre-
gation is realised by a conversion of the single sets (which are to be aggregated) to polytopes, which is
computationally expensive, especially in higher dimensions.

6 Conclusion

In this paper we presented an approach to reduce the computational effort in the reachability analysis
of hybrid systems for certain applications. Our experimental results indicate that even state-of-the art
reachability analysis tools struggle to analyse high-dimensional models with relatively simple dynamics,
which are common in the application area of controlled plants.

In general controlled plants are composed of many single components such as the set of controllers
or the physical quantities of the plant. A naive approach models each of these components and the
full model is the result of a parallel composition of the single components. Even the relatively simple
examples used in Section 5 yield large models which put state-of-the-art reachability analysis tools to
their limits. To increase scalability, domain-specific knowledge helps to create more sophisticated and
smaller models. For example knowing that PLC computation as well as the plant’s behaviour do not

S.Schupp, J.Nellen & E.Ábrahám 13

interfere during a PLC cycle already allows to prohibit arbitrary switching between the controller and
the plant, which reduces the model complexity.

In contrast to common benchmarks for hybrid systems, our plant models exhibit a large number of
discrete variables accounting for the controller’s behaviour. Currently available tools do not distinguish
between the different dynamics of variables, thus discrete variables usually are treated as continuous
variables and unnecessarily increase the dimension of the state space.

Our approach allows to split variable sets according to their dynamics, which has a positive effect on
the running times, as reachability analysis algorithms can be protected from working in high-dimensional
spaces. We can observe that the distribution of variables to the different sets has a high influence on the
computation time. We expect that splitting the set of continuous variables (if applicable) into multiple,
independent sets with fewer variables each will result in the best results regarding computation time.
Furthermore in applications with several PLC controllers, each control program operates independently,
which allows to build separate variable sets for each controller. Depending on the dimension of the
individual sets and the associated dynamics for the contained variables, utilizing individual state set
representations can be beneficial. As state sets for independent discrete variables are always hyper-
rectangles, using boxes instead of other, computationally more expensive state set representations has
shown great improvements in terms of runtime. For higher dimensional state sets support functions can
be expected to perform better than other state set representations.

In our application scenario, syntactically independent variable sets are directly given. In general, this
is not necessarily the case for hybrid system models. Transforming the state space can help to identify
independent variable sets and allows to apply the presented approach to systems where the independent
variable sets are not obvious.

As to future work, we will improve our implementation by adding fixed-point detection and a more
sophisticated implementation for state set aggregation. Second, we will embed the presented approach
into a CEGAR framework to refine potentially unsafe paths. Finally, we also work on parallelisation
approaches for flowpipe computations.

References

[1] Matthias Althoff & John M. Dolan (2014): Online verification of automated road vehicles using reachability
analysis. IEEE Transaction on Robotics 30(4), pp. 903–918.

[2] Benchmarks of continuous and hybrid systems. Available at http://ths.rwth-aachen.de/research/
projects/hypro/benchmarks-of-continuous-and-hybrid-systems/.

[3] Olivier Bournez, Oded Maler & Amir Pnueli (1999): Orthogonal polyhedra: Representation and computa-
tion. In: Proc. HSCC’99, LNCS 1569, Springer, pp. 46–60.

[4] Xin Chen, Erika Ábrahám & Sriram Sankaranarayanan (2013): Flow*: An analyzer for non-linear hybrid
systems. In: Proc. CAV’13, LNCS 8044, Springer, pp. 258–263.

[5] Xin Chen & Sriram Sankaranarayanan (2016): Decomposed reachability analysis for nonlinear systems. In:
Proc. RTSS’16, IEEE Computer Society Press, pp. 13–24.

[6] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp & Erika Ábrahám (2015): SMT-RAT: An
open source C++ toolbox for strategic and parallel SMT solving. In: Proc. SAT’15, LNCS 9340, Springer,
pp. 360–368.

[7] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine
Girard, Thao Dang & Oded Maler (2011): SpaceEx: Scalable verification of hybrid systems. In: Proc.
CAV’11, LNCS 6806, Springer, pp. 379–395.

http://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
http://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/

14 Variable separation for hybrid systems reachability

[8] Antoine Girard (2005): Reachability of uncertain linear systems using zonotopes. In: Proc. HSCC’05, LNCS
3414, Springer, pp. 291–305.

[9] Willem Hagemann, Eike Möhlmann & Astrid Rakow (2014): Verifying a PI controller using SoapBox and
Stabhyli: Experiences on establishing properties for a steering controller. In: Proc. ARCH’14, EPiC Series
in Computer Science 34, EasyChair.

[10] Thomas A. Henzinger (1996): The theory of hybrid automata. In: Proc. LICS’96, IEEE Computer Society
Press, pp. 278–292.

[11] HyCreate. Available at http://stanleybak.com/projects/hycreate/hycreate.html.
[12] HyPro Project website. Available at http://ths.rwth-aachen.de/research/projects/hypro/.
[13] HYREACH. Available at https://embedded.rwth-aachen.de/doku.php?id=en:tools:hyreach.
[14] Colas Le Guernic & Antoine Girard (2010): Reachability analysis of linear systems using support functions.

Nonlinear Analysis: Hybrid Systems 4(2), pp. 250–262.
[15] Andrew Makhorin: GNU Linear Programming Kit home page. Available at http://www.gnu.org/

software/glpk/glpk.html.
[16] Ramon E. Moore, Ralph Baker Kearfott & Michael J. Cloud (2009): Introduction to interval analysis. SIAM.
[17] Leonardo M. de Moura & Nikolaj Bjørner (2008): Z3: An efficient SMT solver. In: Proc. TACAS’08, LNCS

4963, Springer, pp. 337–340.
[18] Johanna Nellen (2016): Analysis and synthesis of hybrid systems in engineering applications. Ph.D. thesis,

RWTH Aachen University, Aachen. Available at https://publications.rwth-aachen.de/record/
680323.

[19] Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf & Stefan Kowalewski (2017): HyPro: A C++ library
for state set representations for hybrid systems reachability analysis. In: Proc. NFM’17, LNCS, Springer. To
appear.

[20] Roland Wunderling (1996): Paralleler und objektorientierter simplex-algorithmus. Ph.D. thesis, Technische
Universität Berlin.

[21] Günter M. Ziegler (1995): Lectures on polytopes. 152, Springer.

http://stanleybak.com/projects/hycreate/hycreate.html
http://ths.rwth-aachen.de/research/projects/hypro/
https://embedded.rwth-aachen.de/doku.php?id=en:tools:hyreach
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://publications.rwth-aachen.de/record/680323
https://publications.rwth-aachen.de/record/680323

Submitted to:
QAPL 2017

c© S. Arming, E. Bartocci, and A. Sokolova
This work is licensed under the
Creative Commons Attribution License.

SEA-PARAM:
Exploring Schedulers in Parametric MDPs

Sebastian Arming
University of Salzburg, Austria

Ezio Bartocci
TU Wien, Austria

Ana Sokolova
University of Salzburg, Austria

We study parametric Markov decision processes (PMDPs) and their reachability probabilities ”inde-
pendent” of the parameters. Different to existing work on parameter synthesis (implemented in the
tools PARAM and PRISM), our main focus is on describing different types of optimal determinis-
tic memoryless schedulers for the whole parameter range. We implement a simple prototype tool
SEA-PARAM that computes these optimal schedulers and show experimental results.

1 Introduction

A Markov decision process (MDP) [2] is a state-based Markov model in which a state can perform one
of the available action-labeled transitions after which it ends up in a next state according to a probability
distribution on states. The choice of a transition to take is nondeterministic, but once a transition is chosen
the behaviour is probabilistic. MDPs provide a valuable mathematical framework to solve control and
dependability problems in a wide range of applications, including the control of epidemic processes [20],
power management [24], queueing systems [28], and cyber-physical systems [21]. MDPs are also known
as reactive probabilistic systems [19, 10] and closely related to probabilistic automata [27].

In this paper, we study parametric Markov decision processes (PMDPs) [6, 12]. These are models in
which (some of) the transition probabilities depend on a set of parameters. An example of an action in a
PMDP is tossing a (possibly unfair) coin which lands heads with probability p and tails with probability
1− p where p ∈ [0,1] is a parameter. Hence, a PMDP represents a whole family of MDPs—one for each
valuation of the parameters.

We study reachability properties in PMDPs. To explain what we do exactly, let us take a step back.
If an MDP can only perform a single action in each state, then it is a Markov chain (MC). If a PMDP can
perform a single action in each state, then it is a parametric Markov chain (PMC). Given a start state and
a target state in a PMC, the probability of reaching the target from the start state is a rational function
in the set of parameters. This rational function can be elegantly computed by the method of Daws [8]
providing arithmetic interpretation for regular expressions. The method has been further developed and
efficiently implemented in the tool PARAM [13, 11, 12].

Clearly, there is no such thing as the probability of reaching a target state from a starting state in
an MDP: such a reachability probability depends on which actions were taken along the way, i.e., of
how the nondeterministic choices were resolved. What is usually of interest though are the min/max
reachability probabilities, i.e., among all possible ways to resolve the nondeterministic choices, those
that provide minimal/maximal probability of reaching a state. Nondeterministic choices are resolved
using schedulers or policies, and luckily when it comes to min/max reachability probabilities simple
schedulers suffice [2]. Simple schedulers are deterministic and memoryless, i.e., history independent.
Given an MDP, a simple scheduler induces an MC, and the reachability probabilities under this scheduler
are simply the reachability probabilities of the induced MC.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 SEA-PARAM

With PMDPs, the situation is even more delicate. The probability of reaching a target state from
a starting state depends on the scheduler, i.e., on how the nondeterministic choices were resolved, as
well as on the values of the parameters. The full reachability picture looks like a sea — each scheduler
imposes a rational function — a wave — over the parameter range; the sea then consists of all the waves.

There are two possible scenarios of interest:

(1) We have access to the parameters.

(2) We have no access to the parameters, they represent uncertainty or noise or choices of the environ-
ment.

In case (1), parameter synthesis is the problem to solve. The parameter synthesis problem comes in
two flavours: (a) Find the parameter values that maximise / minimise the reachability probability; (b) For
each value of the parameters, find the max/min reachability probability. These are the problems that have
attracted most attention in the analysis of PMCs [4, 14, 23, 9, 25] and PMDPs [6, 12], see Section 2 for
more details.

In this paper, we consider case (2) and propose solutions for imposing bounds on the reachability
probabilities throughout the whole parameter range.

In particular we:

• Start by enumerating all simple schedulers and computing their corresponding rational functions.

• Identify classes of optimal schedulers, for different problems of interest, see Section 5.

• Provide a tool that computes optimal schedulers in each of the classes for a given PMDP, see
Section 7.

We admit that we take upon this task knowing that it is computationally hard. Already the number of
simple schedulers is exponential in the number of states of the involved PMDP. Optimisation is in general
also hard (computing maxima, minima, and integrals of the involved rational functions), see Section 7
for references and more details. Nevertheless, the analysis that we aim at is not an online analysis, but
rather a preprocessing step, and even if it may only work on small examples, it provides insight in the
behaviour of a system and its schedulers.

Our tool extensively uses the state-of-the-art tools PARAM1 [13, 11] and PARAM2 [12] for efficient
computation of the rational functions, see Section 2 and Section 7 for details. Once we have all schedulers
and their respective waves, we feed the waves to a numerical tool that allows us to calculate the optimal
schedulers.

1,1

2,11,2

EN

lr
1-l1-r

1,1

2,11,2

EN

l+rl+r
1-l-r1-l-r

2,1

1,2 2,2

1,1
EW

N

S

s
e

p

1-p

a

b

1

e

e

1

b

a

c

x

p

p

1-p

1-p

t

Figure 1: 2× 2 Labyrinth with
sink at (1,2)

We experiment with a class of examples describing the behaviour
of a robot walking in a labyrinth grid. Each position on the grid is a
state of the MDP, and the available actions are N, S, E, and W , describ-
ing the directions (north, south, east, and west) of a possible move.
Not all actions are available in every state. Some states represent holes
(sinks) in which no action is available, others correspond to border-
positions, and hence some actions are disabled. See Section 6 for fur-
ther description of our class of examples. One small concrete example
in this class is the PMDP describing a 2×2 grid with a sink at position
(1,2). In (1,1) the actions N and E are available, in (2,1) the actions N and W , and in (2,2), the actions
S and W .

The model is parametric with two parameters l and r having the following meaning: In a state s with
an enabled action M, the robot moves forward with probability 1− l− r to its intended state s′, or ends

S. Arming, E. Bartocci, and A. Sokolova 3

1,1

2,11,2

EN

lr
1-l1-r

1,1

2,11,2

EN

l+rl+r
1-l-r1-l-r

2,1

1,2

START

END

2,2

1,1
EW

N

S

(a) Fixed failure

1,1

2,11,2

EN

lr
1-l1-r

1,1

2,11,2

EN

l+rl+r
1-l-r1-l-r

2,1

1,2

START

END

2,2

1,1
EW

N

S

(b) Fixed success

Figure 2: The behavior of state (1,1)

(a) Fixed failure (b) Fixed success

Figure 3: The sea of reachability probabilities from state (1,1) to state (2,2)

up in the state sl left of s (in the direction of the move) with probability l, and in the state sr right of s (in
the directions of the move) with probability r, provided both states sl and sr exist. If one of sl or sr does
not exist, then we consider two scenarios:

• Fixed failure: In this scenario, the probability to the existing state sl or sr remains l or r, but the
probability of reaching s′ increases to 1− l or 1− r, respectively.

• Fixed success: Here, the probability to s′ remains the same, and the probability to sl or sr (whichever
exists) becomes l + r.

Figure 2 shows the behaviour of state (1,1) in both scenarios and Figure 3 pictures all waves – rational
functions corresponding to reachability of target state (2,2) from the starting state (1,1) – in each of the
two scenarios.

As we can see even in this small example, the reachability probability varies through the parameter
range and significantly depends on the chosen scheduler. For different purposes, different schedulers
may be preferred. We identify ten classes of optimal schedulers that may be preferred in certain cases.
For example, one may wish to use a scheduler that guarantees highest reachability probability for any
value of the parameter, if such a scheduler exists. We call such a scheduler dominant. That would be
the red scheduler in Figure 3a. In Figure 3b there is no dominant scheduler. However, one may prefer
a scheduler that reaches the maximum value (reachability probability 1 in this case) for some value of
the parameter. We call such schedulers optimistic. In Figure 3b the red and the green schedulers are
optimistic. In addition, one may prefer the red over the green, as under the assumption of a uniform
distribution of parameters, the red has a higher value over a larger parameter region — we call such
schedulers expecation schedulers. For yet another purpose, one may prefer the yellow or the blue sched-
uler, as its difference in reachability probabilities is the smallest — the bound scheduler according to our
definition.

See Section 5 for the exact definitions of all classes of optimal schedulers.

4 SEA-PARAM

Finally, we mention that we started analysing simple schedulers as a first step in the scheduler anal-
ysis of PMDPs. As we discuss in Section 8, we are aware that optimal schedulers (in our classes) need
not be simple. Nevertheless, we believe that conquering simple schedulers is an important first step.

2 Related Work

In the last decade there has been a growing interest in studying parametric probabilistic models [8, 18]
where some of the probabilities (or rates) in the models are not known a-priori. These models are very
useful when certain quantities (e.g. fault rates, packet loss ratios, etc.) are partially available (which is
often the case) or unavailable at the design time of a system. In his seminal work [8], Daws studies the
problem of symbolic model checking of parametric probabilistic Markov chains. He provides a method
based on regular expressions extraction and state elimination to symbolically express the probability to
reach a target state from a starting state as a multivariate rational function whose domain is the param-
eter space. This technique was further investigated and implemented in the PARAM1 and PARAM2
tools [13, 11] and it is now also included in the popular PRISM model checker [17]. In this context, the
problem of parameter synthesis for a parametric Markov chain consists of solving a constrained nonlin-
ear optimisation problem where the objective function is a multivariate rational function representing the
probability to satisfy a given reachability property depending on the parameters. As discussed in [16, 18]
and later in this paper, when the order of these multivariate rational functions is high, such constrained
optimisation problem can become computationally very expensive.

In [4] Bartocci et al. introduce a complementary technique to parameter synthesis, called model
repair, that exploits the PARAM1 tool in combination with a nonlinear optimisation tool to find auto-
matically the minimal change of the parameter values required for a model to satisfy a given reachability
property that the model originally violates. In this case the problem boils down to solving a nonlinear
optimisation program having for objective function an L2-norm (quadratic and indeed suitable for con-
vex optimisation) measuring the distance between the original parameter values and the new ones and
having as constrains the multivariate rational function associated with the reachability property.

Recently, more sophisticated symbolic parameter synthesis techniques [14, 23, 9, 25] based also on
SMT solvers and greedy approaches [23] have further improved this field of research. At the same time
statistical-based approaches leveraging powerful machine learning techniques [5, 3] have been shown
to provide better scaling of the model checking problem for large parametric continuous Markov chains
when the number of parameters is limited and the event of satisfying the property is not rare.

All the aforementioned methods do not natively support nondeterministic choice and are indeed not
suitable for solving parametric Markov decision processes. The parametric model checking problem for
this class of models has been addressed so far in the literature using two complementary methods [6, 12].

The first method, implemented in PARAM2 [12], is a region-based approach where the parameter
space is divided into regions representing sets of parameter valuations. For each region, lower and upper
bounds on optimal parameter values are computed by evaluating the edge points of the regions. Given
a desired level of precision for the result as input, the algorithm decides whether to further split the
region into smaller ones to be explored or to terminate with the intervals found. The correctness and
the termination of this algorithm is guaranteed only under certain assumptions as discussed in [12]. The
second method [6] is a sampling-based approach (i.e., based on sampling methods like the Metropolis-
Hastings algorithm, particle swarm optimisation, and the cross-entropy method) that are used to search
the parameter space. These heuristics usually do not guarantee that global optimal parameters will be
found. Furthermore, when the regions of the parameters satisfying a requirement are very small, a large

S. Arming, E. Bartocci, and A. Sokolova 5

amount of simulations is required.
We just became aware of a very recent work of Cubuktepe et al. [7] (to appear in TACAS’17) where

the authors consider the problem of parameter synthesis in parametric Markov decision processes using
signomial programs, a class of nonconvex optimisation problems for which it is possible to provide
suboptimal solutions.

3 Markov Chains and Markov Decision Processes

Definition 1 (Markov chain). A (discrete-time) Markov chain (MC) is a pair M = (S,P) where:

• S is a countable set of states, and

• P : S×S→ [0,1] is a transition probability function such that for all s in S, ∑s′∈S P(s,s′) = 1. �
Given an MC M = (S,P) and two states s, t ∈ S, we denote the probability to reach t from s by

PrM(s, t). If M is clear from the context, we will omit the superscript in the reachability probability.
We next present the definition of an MDP without atomic propositions and rewards, as they do not

play a role for what follows.

Definition 2 (Markov decision process). A (discrete-time) Markov Decision Process (MDP) is a triple
M = (S,Act,P) where:

• S is a countable set of states,

• Act is a set of actions,

• P : S×Act×S→ [0,1] is a transition probability function such that forall s in S and a in Act we
have ∑s′∈S P(s,a,s′) ∈ {0,1}. �

In this paper we only consider finite MCs and MDPs, that is MCs and MDPs in which the set of
states S (and actions Act) is finite. If needed, we may also specify a distinguished initial state s0 ∈ S in
an MC or an MDP.

An action a is enabled in an MDP state s iff ∑s′∈S P(s,a,s′) = 1. We denote by Act(s) the set of
enabled actions in state s. It is often required that Act(s) 6= /0 in an MDP, but we omit this requirement.
A state s for which Act(s) = /0 is called a sink. A simple scheduler resolves the nondeterministic choice,
selecting at each non-sink state s one of the enabled actions a∈Act(s). A synonym for a simple scheduler
is deterministic memoryless/history-independent scheduler.

Definition 3 (Simple scheduler). Given an MDP M = (S,Act,P), a simple scheduler ξ of M is a function
ξ : S→ Act+1 where 1 = {⊥} and + denotes disjoint union, satisfying ξ (s) ∈ Act(s) for all s ∈ S such
that Act(s) 6= /0, and ξ (s) =⊥ otherwise. �
Definition 4 (Scheduler-induced Markov chain). Let ξ be a simple scheduler of an MDP M. Then the
ξ -induced Markov chain is the Markov chain Mξ = (S,Pξ) where Pξ (s, t) = P(s,ξ (s), t) if ξ (s) 6=⊥ and
Pξ (s,s) = 1 otherwise. �

Note that in this work we only consider simple schedulers. This justifies our nonstandard (and much
simpler) definition of an induced Markov chain. From now on we will sometimes simply say scheduler
for a simple scheduler.

Definition 5 (Maximum/Minimum reachability probabilities). Given an MDP M = (S,Act,P) and two
states s, t ∈ S, the maximum reachability probability from s to t is

PrM
max(s, t) = max

ξ

PrMξ (s, t),

6 SEA-PARAM

and similarly, the minimum reachability probability from s to t is given by

PrM
min(s, t) = min

ξ

PrMξ (s, t),

where ξ ranges over all simple schedulers. We call a scheduler ξ a maximal (minimal) scheduler from s
to t iff PrMξ (s, t) is the maximal (minimal) reachability probability from s to t. �

4 Parametric MCs and MDPs

We first recall the notion of a rational function (following [13, 11], with a small restriction). Let V =
{x1, . . . ,xn} be a fixed set of variables. An evaluation is a function v : V → R. A polynomial over V is a
function

g(x1, . . . ,xn) = ∑
i1,...,in

ai1,...,inxi1
1 · · ·x

in
n ,

where i j ∈ N for 1≤ j ≤ n and each ai1,...,in ∈ R. A rational function over V is a quotient

f (x1, . . . ,xn) =
g1(x1, . . . ,xn)

g2(x1, . . . ,xn)

of two polynomials g1 and g2 over V . By FV we denote the set of rational functions over V . Hence,
a rational function is a symbolic representation of a function from Rn to R. Given f ∈ FV and an
evaluation v, we write f 〈v〉 for f (v(x1), . . . ,v(xn)).

It is now straightforward to extend MCs and MDPs with parameters [8, 18, 13, 11]. Again, we only
consider finite models.

Definition 6 (Parametric Markov chain). A parametric (discrete-time) Markov chain (PMC) is a triple
M = (S,V,P) where:

• S is a finite set of states,

• V is a finite set of parameters, and

• P : S×S→FV is the parametric probability transition function. �

Given a PMC M = (S,V,P), a valuation v of the parameters induces an MC Mv = (S,Pv) where
Pv(s,s′) = P(s,s′)〈v〉 for all s,s′ ∈ S, if for all s in S we have ∑s′∈S P(s,s′)〈v〉= 1. If a valuation v induces
a Markov chain on M, then we call v admissible. The set of all admissible valuations for M is the
parameter space of M.

Similarly, we define parametric MDPs.

Definition 7 (Parametric Markov Decision Process). A parametric (discrete-time) Markov Decision Pro-
cess (PMDP) is a tuple M = (S,Act,V,P) where:

• S is a finite set of states,

• Act is a finite set of actions,

• V is a finite set of parameters, and

• P : S×Act×S→FV is the parametric transition probability function. �

S. Arming, E. Bartocci, and A. Sokolova 7

Also here a valuation may induce an MDP from a PMDP, in which case we call it admissible. Given
a PMDP M = (S,Act,V,P), a valuation v of the parameters induces an MDP Mv = (S,Act,Pv) where
Pv(s,a,s′) = P(s,a,s′)〈v〉, if for all s in S and a in Act we have ∑s′∈S P(s,a,s′)〈v〉 ∈ {0,1}. Also here, the
set of admissible valuations is the parameter space of M.

Notice that a PMDP M and its v-induced MDP Mv have the same set of states and actions, as well as
the same sets of enabled actions in each state, and therefore they have the same simple schedulers. Now,
starting from a PMDP M, and given its scheduler ξ , one may: (1) first consider the ξ -induced PMC Mξ

and then the v-induced MC (Mξ)v for a valuation v, or (2) one first takes the valuation-induced MDP
Mv and then its scheduler-induced MC (Mv)ξ . The result is the same and hence we write Mξ ,v for the
ξ -and-v-induced MC.

We now fix a source state s in a PMDP, and a target state t and discuss the reachability probabilities
that are now dependent on both the choice of a scheduler ξ and the choice of a parameter valuation
v. Given a valuation v and a scheduler ξ , the reachability probability is PrMξ ,v(s, t). The (reachability
probability) wave corresponding to ξ is a rational function fξ in the set of parameters, such that fξ 〈v〉=
PrMξ ,v(s, t). The (reachability probability) sea consists of all fξ for all schedulers ξ .

We also write (for a PMDP M):

PrMv
max(s, t) = maxξ PrMξ ,v(s, t),

Pr
Mξ

max(s, t) = maxv PrMξ ,v(s, t),
PrM

max(s, t) = maxξ ,v PrMξ ,v(s, t),

and similarly for the minimum reachability probabilities.

5 Classes of Optimal Schedulers

In this section we define and discuss a selection of types of optimal schedulers. This is meant to serve as
an invitation for the reader to further develop useful notions of optimality.

Our initial idea is the following: Once we have generated all rational functions (corresponding to all
schedulers), a type of optimality assigns a score to each rational function (and hence to the scheduler
inducing it). The optimal schedulers of this type then maximise or minimise the assigned score.

We introduce the notion of a dominant scheduler and nine additional types of optimal schedulers.
These types are: the optimistic, the pessimistic, the bound, the expectation, the stable, the ε-bounded,
the ε-stable, and the ε-bounded- and ε-stable-robust. We next present the definition for each of them.
For simplicity, we may use scheduler and function interchangeably — thus identifying a scheduler and
its induced rational function when no confusion may arise.

Definition 8 (Dominant scheduler). A scheduler ω is dominant if at any parameter valuation v, its func-
tion has the maximal value of all functions of all schedulers, i.e., ∀v.∀ξ . fω〈v〉 ≥ fξ 〈v〉. �

Definition 9 (Optimistic scheduler). A scheduler ω is optimistic, if its function has the maximal maxi-
mum value of all functions of all schedulers, i.e.,

PrMω

max(s, t) = maxξ Pr
Mξ

max(s, t) = PrM
max(s, t). �

Definition 10 (Pessimistic scheduler). A scheduler is pessimistic, if its function has the maximal mini-
mum value of all functions of all schedulers, i.e.,

PrMω

min(s, t) = maxξ Pr
Mξ

min(s, t). �

8 SEA-PARAM

Definition 11 (Bound scheduler). A scheduler is bound, if its function has the minimal range, i.e., mini-
mal difference between its maximal and minimal value of all functions of all schedulers, i.e.,

PrMω

max(s, t)−PrMω

min(s, t) = minξ

(
Pr

Mξ

max(s, t)−Pr
Mξ

min(s, t)
)
. �

Definition 12 (ε-Bounded scheduler). A scheduler ξ is ε-bounded if the length of the (closed-interval)
range of its function is bounded by ε , i.e.,

Pr
Mξ

max(s, t)−Pr
Mξ

min(s, t)≤ ε

for a non-negative real number ε . �

Definition 13 (ε-Bounded robust scheduler). A scheduler ω is ε-bounded robust if it is the maximal
among all ε-bounded schedulers, i.e., ∀v.∀ ε-bound ξ . fω〈v〉 ≥ fξ 〈v〉. �

The intuition behind these types of optimal schedulers is the following. If a user does not know the
value of the parameters, then taking the

• dominant scheduler guarantees that one can do as good as it gets independent of the parameters;

• optimistic scheduler guarantees that one can do as good as it gets in case the parameters are the
best possible;

• pessimistic scheduler guarantees that no matter what the parameters are, even in the worst case we
will perform better than the worst case of any other scheduler;

• bound scheduler guarantees that one will see minimal difference in reachability probability by
varying the parameters;

• ε-boundness is an absolute notion guaranteeing that such a scheduler never has a larger difference
in reachability probability than ε;

• finally, ε-bounded robustness gives the maximal scheduler among all ε-bounded ones.

Dominant, ε-bounded, and ε-bounded robust schedulers need not exist.
Note that computing optimistic, pessimistic, bound, ε-bounded, and ε-bounded robust schedulers

requires computing the maximum and the minimum of the involved functions, which is in general
hard [16], see Section 7 for more details.

The following classes do not require computing extremal values and may provide a better global
picture of the reachability probabilities. Their optimality is based on maximising/minimising or bound-
ing the probability mass over the whole parameter space, also allowing for specifying a probability
distribution on the parameter space. If the distribution of parameters is unknown, we assume uniform
distribution. However, it is likely that a distribution of parameters is known or can be estimated, in which
case these schedulers take it into account. From now on, Let p denote a probability density function over
the parameter space.

Before we proceed, let us define the expectation and variance of a scheduler. The expectation of
a scheduler ξ is E(ξ) = E(fξ) =

∫
fξ d p and the variance is Var(ξ) = E(ξ −E(ξ))2. Note that here

ξ −E(ξ) denotes the rational function fξ −E(ξ).

Definition 14 (Expectation Scheduler). A scheduler is an expectation scheduler, if its function has the
maximal expected value of all functions of all schedulers, i.e., ω is an expectation scheduler if E(ω) =
maxξ E(ξ). �

Definition 15 (Stable scheduler). A scheduler ω is stable, if its function has the minimal variance, i.e.,
Var(ω) = minξ Var(ξ). �

S. Arming, E. Bartocci, and A. Sokolova 9

Definition 16 (ε-Stable scheduler). A scheduler ξ is ε-stable if its variance is bounded by ε , i.e.,
Var(ξ)≤ ε

for a non-negative real number ε . �

Definition 17 (ε-Stable robust scheduler). A scheduler ω is ε-stable robust if it its expectation is maxi-
mal among all ε-stable schedulers, i.e., E(ω) = max ε-stable ξ E(ξ). �

If a dominant scheduler exists, then it is also optimistic, pessimistic, and expectation optimal.

Example 1. Consider the 2×2 labyrinth with sink at (1,2) from Figure ?? in the introduction.
In the fixed failure case, Figure 3a, the red scheduler is dominant (and hence optimistic, pessimistic,

and expectation optimal). All schedulers are optimistic, pessimistic, and bound. The yellow scheduler is
stable, and the blue is (median variance)-stable.

In the fixed success case, Figure 3b, there is no dominant scheduler. The red and green schedulers
are optimistic, all are pessimistic, the yellow and the blue are bound. The red is expectation optimal, the
yellow is stable, and the blue is (median variance)-stable robust.

6 Parametric Labyrinths

The class of examples of a robot in a labyrinth provides a wide playground for studying parametric
models. We consider n×n labyrinths. States are the positions in the labyrinth, and the set of actions is
{N,S,E,W}.

Taking an action probabilistically determines the next state, as the robot may indeed reach the in-
tended new position or fail to do so and end up in another unintended position. There are many ways
to specify what happens if the robot fails, we chose the way as in the example in the introduction: our
robot can fail to reach the intended position and instead end up left or right of its current position with a
certain probability.

A most general way to turn this into a parametric model is to consider all probabilities depending on
a parameter, e.g. in every state, for every action, there is a parameter that provides the probability to fail
left and another that provides the probability to fail right, and the probability of success is determined by
the values of these two parameters. This results in a model with 8|S|= 8n2 parameters.

We simplify this general scenario and limit the parameters to smaller numbers. In particular, we
consider models with k parameters where

(1) k = 8 and we take per action two parameters (e.g. for action N, the probability to fail left with
action N and the probability to fail right), which are then the same in every state whenever this
action is taken.

(2) k = 2 and we take two parameters l and r that serve the purpose like in (1) and in the example in
the introduction for every state and every action.

(3) k = 1 and we have a single parameter p in the model that serves the purpose like in (2) for every
state and every action.

In all of these cases for states on the boundary we consider one of the two scenarios – fixed failure
or fixed success – as specified for the example in the introduction.

In addition, we experiment with making some states sink states, just like we did with state (1,2) in
the introduction example.

10 SEA-PARAM

7 Implementation and Experiments

We have implemented a first prototype of SEA-PARAM leveraging the open-source parametric model
checking framework of the PRISM model checker [17] and Wolfram Mathematica1.

SEA-PARAM receives as input a PMDP and a reachability property. Firstly, it explores all the pos-
sible memoryless schedulers generating for each of them a multivariate rational function that maps the
parameter space into the probability to satisfy the desired property. For the generation and the manipula-
tion of the multivariate rational functions, PRISM leverages the Java Algebra Systems (JAS)2. This task
is embarrassingly parallel, since each memoryless scheduler can be treated independently from the oth-
ers. We exploit this with a concurrent implementation, which leads to constant (given by the number of
cores) speed-up. However, in the worst-case the number of schedulers (which we straightforwardly enu-
merate in this first attempt) can be exponential in the number of states, resulting in exponential running
time.

After the memoryless schedulers enumeration and function computation, the corresponding multi-
variate rational functions are evaluated according to a chosen optimality criterion using a script developed
within the Wolfram Mathematica framework. We chose Mathematica for the ability to quickly imple-
ment our different formal notions of optimality criteria for the schedulers provided in the paper. The
Mathematica program takes as input the list of schedulers with their corresponding functions generated
in the previous step and computes a score for each multivariate rational function. This task can again
be computed in parallel for each multivariate rational function. Nevertheless, again, in general the com-
putation of the score of a multivariate rational function is NP-hard [15, 26, 22]. For example, already
the minimisation of a multi-variate quadratic function over the unit cube is NP-hard, see e.g. [22] for a
reduction from SUBSET-SUM. For several classes of well-behaved functions (e.g. convex functions or
unimodal ones) our scores can be efficiently computed. We know for sure that not all our functions are
convex or unimodal, but there is still a chance that the functions form another well-behaved class. We
intend to explore this possibility in future work.

Note that, since we generate a list of schedulers together with their rational functions, it is straight-
forward to find the scheduler corresponding to a rational function.

7.1 Experiments

The experiments reported here ran on a unified memory architecture (UMA) machine with four 10-core
2GHz Intel Xeon E7-4850 processors supporting two hardware threads (hyper-threads) per core, 128GB
of main memory, and Linux kernel version 4.4.0. The first part (based on PRISM SVN revision 11807)
was compiled and run with OpenJDK 1.8.0. The second part was executed in Mathematica 11.0 using
16 parallel kernels. During our experiments we identified a bug in a greatest-common-divisor (gcd)
procedure of the JAS library, that resulted in computing wrong functions. We work around this bug by
substituting a simpler gcd procedure. All of our code and detailed results of the experiments can be found
at [1].

Table 1 gives an overview of our experimental results. We present 23 experiments in total, for the
various scenarios described in Section 6. For each scenario the table shows the number of schedulers,
the number of unique functions (as two schedulers might have the same rational function), as well as the
running times of key parts of our system. In particular, we show the running time for the computation
of the rational functions (column PRISM) and the computation of the expectation and optimistic optimal

1https://www.wolfram.com/mathematica/
2http://krum.rz.uni-mannheim.de/jas/

S. Arming, E. Bartocci, and A. Sokolova 11

Grid scenario Number of Execution time in seconds
k size type target sinks schedulers functions PRISM optimistic expectation
8 2x2 ff (2,2) (1,2) 4 4 0.11 1.39 1.40
8 2x2 fs (2,2) (1,2) 4 4 0.10 2.19 19.09
2 2x2 ff (2,2) (1,2) 4 4 0.07 0.58 0.71
2 2x2 fs (2,2) (1,2) 216 63 1.76 1.90 0.26
2 3x3 ff (1,3) (1,2),(2,2) 432 120 5.68 3.94 0.69
2 3x3 ff (2,2) (1,2) 864 398 13.53 15.36 2.11
2 3x3 ff (3,3) (1,2) 648 246 6.95 7.83 0.98
2 3x3 ff (3,3) (2,2) 4 4 0.06 0.31 0.05
2 3x3 fs (1,3) (1,2), (2,2) 216 63 1.85 1.85 0.42
2 3x3 fs (2,2) (1,2) 432 120 6.53 4.29 0.78
2 3x3 fs (3,3) (1,2) 864 399 12.14 18.64 2.63
2 3x3 fs (3,3) (2,2) 648 234 9.18 8.13 1.32
1 2x2 ff (2,2) (1,2) 4 4 0.06 1.40 0.04
1 2x2 fs (2,2) (1,2) 216 60 0.78 5.67 0.16
1 3x3 ff (1,3) (1,2), (2,2) 432 114 2.29 9.72 0.18
1 3x3 ff (2,2) (1,2) 864 390 6.46 34.48 0.52
1 3x3 ff (3,3) (1,2) 648 122 3.48 12.57 0.19
1 3x3 ff (3,3) (2,2) 4 4 0.05 1.41 0.04
1 3x3 fs (1,3) (1,2), (2,2) 216 63 1.09 4.87 0.12
1 3x3 fs (2,2) (1,2) 432 114 1.72 11.21 0.19
1 3x3 fs (3,3) (1,2) 864 391 5.63 34.01 0.54
1 3x3 fs (3,3) (2,2) 648 124 2.42 10.21 0.17
1 4x4 fs (4,4) (1,2) 4478976 2010270 89677.00 42824.00 32986.00

Table 1: Overview of the experimental results

schedulers. We selected these two classes of optimal schedulers as they illustrate the characteristics of
our two score classes (integral/mass vs extremal values) the best. Our largest experiments involves a
4x4 labyrinth with a single parameter; it results in over 2 million distinct rational functions (and takes
significant amount of time to compute).

In Figure 4 we plot the rational functions of two 3x3 labyrinths with one parameter, to give a flavour
of the different schedulers encountered. In both cases no scheduler is dominant and several of them are
optimistic. In Figure 4a we see a single expectation scheduler (actually two schedulers with a single
rational function) and a single pessimistic scheduler (again actually two schedulers), while in Figure 4b
there are two symmetric expectation schedulers, and all schedulers are pessimistic (as they all have
minimal value 0). In both scenarios the stable and the bound schedulers coincide - in Figure 4a the
corresponding function is constant 0. We also show an ε-stable robust scheduler with ε chosen to be the
median variance of the rational functions. In Figure 4b this yields a function very close to the expectation
scheduler function with slightly lower variance.

Note that we plot the rational functions for the optimal schedulers. From these functions we can look
up the corresponding schedulers. For instance, the function labeled expectation in Figure 4a corresponds
to the two expectation optimal schedulers that in (1,1) take E or N respectively; take N in (1,2), (3,1),
and (3,2); and take E in (1,3), (2,3) (and of course in (2,1) where there is no other choice).

12 SEA-PARAM

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

optimistic

expectation

stable, bound

ϵ-stable robust

pessimistic

(a) fixed failure from (1,1) to (3,3) with a sink at (2,2)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

optimistic

expectation

stable, bound

ϵ-stable robust

(b) fixed success from (1,1) to (2,2) with a sink at (1,2)

Figure 4: The rational functions of schedulers for two 3x3 labyrinths with k = 1

8 Discussion

In our first-version prototype implementation of SEA-PARAM we focus on simple schedulers, which
are already exponentially many. However, not always simple schedulers are optimal according to our
optimality definitions. A history dependent (hence not simple) scheduler may estimate the parameters
and thus provide better behaviour than any simple scheduler, as we show with the following example.

1,1

2,11,2

EN

lr
1-l1-r

1,1

2,11,2

EN

l+rl+r
1-l-r1-l-r

2,1

1,2

START

END

2,2

1,1
EW

N

S

s
e

p

1-p

a

b

1

e

e

1

b

a

c

x

p

p

1-p

1-p

t

(a) An example PMDP M

p

1-p

sea

p

1-p

p

1-p

sebecbx

s

seaec

sebecseb

1

1

seaecat

seaecax

sebecbt

(b) Induced MC by a history-dependent scheduler

Figure 5: History dependency

Consider the PMDP M in Figure 5a where p is a parameter. There are two simple schedulers for M:
α with α(c) = a and β with β (c) = b (all other states are mapped to the single available action and t and
x are sink states). Their corresponding rational functions are fα(p) = p and fβ (p) = 1− p.

S. Arming, E. Bartocci, and A. Sokolova 13

Consider now the history-dependent scheduler χ of M that schedules a in state c if and only if
the state a has been visited before. The χ-induced MC is shown in Figure 5b. The rational function
corresponding to χ is fχ(p) = p2 +(1− p)2. All three rational functions are depicted in Figure 6, and χ

wins in all optimality classes against α and β .

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

fα(p) = p

fβ(p) = 1-p

fχ(p) = p2+(1-p)2

Figure 6: The rational functions of α , β , and χ; χ wins in optimality

We aim at broadening our scheduler exploration to history-dependent schedulers in the near future.

Acknowledgments. This work was supported by the Austrian National Research Network RiSE/SHiNE
(S11405-N23 and S11411-N23) project funded by the Austrian Science Fund (FWF) and partially by the
Fclose (Federated Cloud Security) project funded by UnivPM.

References

[1] Sebastian Arming, Ezio Bartocci & Ana Sokolova (2017): SEA-PARAM. https://github.com/sarming/
sea-param.

[2] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT Press.

[3] Ezio Bartocci, Luca Bortolussi, Laura Nenzi & Guido Sanguinetti (2015): System design of stochastic models
using robustness of temporal properties. Theor. Comput. Sci. 587, pp. 3–25, doi:10.1016/j.tcs.2015.02.046.

[4] Ezio Bartocci, Radu Grosu, Panagiotis Katsaros, C. R. Ramakrishnan & Scott A. Smolka (2011): Model
Repair for Probabilistic Systems. In: Proc. of TACAS 2011: the 17th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, LNCS 6605, Springer, pp. 326–340.

[5] Luca Bortolussi, Dimitrios Milios & Guido Sanguinetti (2016): Smoothed model checking for uncertain
Continuous-Time Markov Chains. Inf. Comput. 247, pp. 235–253, doi:10.1016/j.ic.2016.01.004.

[6] Taolue Chen, Ernst Moritz Hahn, Tingting Han, Marta Z. Kwiatkowska, Hongyang Qu & Lijun Zhang
(2013): Model Repair for Markov Decision Processes. In: Proc. of TASE 2013: the seventh International
Symposium on Theoretical Aspects of Software Engineering, IEEE Computer Society, pp. 85–92.

[7] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, Ivan Papusha, Hasan A. Poonawala &
Ufuk Topcu (2017): Sequential Convex Programming for the Efficient Verification of Parametric MDPs. In:
Proc. of TACAS 2017, Springer, p. to appear.

[8] Conrado Daws (2005): Symbolic and Parametric Model Checking of Discrete-Time Markov Chains. In: Proc.
of ICTAC 2004: the International Colloquium of Theoretical Aspects of Computing, LNCS 3407, Springer,
pp. 280–294.

[9] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk, Harold Bruintjes, Joost-
Pieter Katoen & Erika Ábrahám (2015): PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In: Proc.

https://github.com/sarming/sea-param
https://github.com/sarming/sea-param
http://dx.doi.org/10.1016/j.tcs.2015.02.046
http://dx.doi.org/10.1016/j.ic.2016.01.004

14 SEA-PARAM

of CAV 2015: the 27th International Conference Computer Aided Verification, LNCS 9206, Springer, pp.
214–231.

[10] Rob J. van Glabbeek, Scott A. Smolka & Bernhard Steffen (1995): Reactive, Generative and Stratified
Models of Probabilistic Processes. Inf. Comput. 121(1), pp. 59–80, doi:10.1006/inco.1995.1123.

[11] Ernst Moritz Hahn, Tingting Han & Lijun Zhang (2011): Probabilistic reachability for parametric Markov
models. STTT 13(1), pp. 3–19.

[12] Ernst Moritz Hahn, Tingting Han & Lijun Zhang (2011): Synthesis for PCTL in Parametric Markov Decision
Processes. In: Proc. of NFM 2011: the third Third International Symposium on NASA Formal Methods,
LNCS 6617, Springer, pp. 146–161.

[13] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter & Lijun Zhang (2010): PARAM: A Model Checker
for Parametric Markov Models. In: Proceedings of the 22nd International Conference on Computer Aided
Verification(CAV 2010), pp. 660–664.

[14] Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Ábrahám, Joost-Pieter JKatoen & Bernd
Becker (2014): Accelerating Parametric Probabilistic Verification. In: Quantitative Evaluation of Systems
- 11th International Conference, QEST 2014, Florence, Italy, September 8-10, 2014. Proceedings, LNCS
8657, Springer, pp. 404–420.

[15] Akitoshi Kawamura (2011): Computational Complexity in Analysis and Geometry. Ph.D. thesis, University
of Toronto.

[16] Vladik Kreinovich, Anatoly Lakeyev, Jiřı́ Rohn & Patrick Kahl (1998): Computational Complexity and
Feasibility of Data Processing and Interval Computations. Applied Optimization 10, Springer US, Boston,
MA.

[17] Marta Z. Kwiatkowska, Gethin Norman & David Parker (2011): PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, Lecture Notes in Computer Science 6806, Springer, pp. 585–591.

[18] Ruggero Lanotte, Andrea Maggiolo-Schettini & Angelo Troina (2007): Parametric probabilistic transition
systems for system design and analysis. Form. Asp. Comput. 19(1), pp. 93–109.

[19] K. G. Larsen & A. Skou (1991): Bisimulation through probabilistic testing. Information and Computation
94, pp. 1–28.

[20] C. Lefevre (1981): Optimal control of a birth and death epidemic process. Oper. Res. 29(5), pp. 971–982.

[21] A. I. Medina Ayala, S. B. Andersson & C. Belta (2012): Probabilistic control from time-bounded temporal
logic specifications in dynamic environments. In: Proc. of ICRA 2012, IEEE, pp. 4705–4710.

[22] Katta G Murty & Santosh N Kabadi (1987): Some NP-complete problems in quadratic and nonlinear pro-
gramming. Mathematical Programming 39(2), pp. 117–129.

[23] Shashank Pathak, Erika Ábrahám, Nils Jansen, Armando Tacchella & Joost-Pieter Katoen (2015): A Greedy
Approach for the Efficient Repair of Stochastic Models. In: Proc. of NFM 2015: the 7th International
Symposium on NASA Formal Methods, LNCS 9058, Springer, pp. 295–309.

[24] Q. Qiu, Q. Wu & M. Pedram (2001): Stochastic modeling of a power-managed system-construction and
optimization. IEEE T. Comput. Aid. D. 20(10), pp. 1200–1217.

[25] Tim Quatmann, Christian Dehnert, Nils Jansen, Sebastian Junges & Joost-Pieter Katoen (2016): Parameter
Synthesis for Markov Models: Faster Than Ever. In: Automated Technology for Verification and Analysis -
14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings, Lecture Notes
in Computer Science 9938, pp. 50–67, doi:10.1007/978-3-319-46520-3.

[26] Sartaj Sahni (1974): Computationally Related Problems. SIAM J. Comput. () 3(4), pp. 262–279.

[27] R. Segala & N.A. Lynch (1994): Probabilistic Simulations for Probabilistic Processes. In: Proc. Concur’94,
LNCS 836, pp. 481–496.

[28] Linn I. Sennott (1998): Stochastic Dynamic Programming and the Control of Queueing Systems. John Wiley
& Sons, Inc.

http://dx.doi.org/10.1006/inco.1995.1123
http://dx.doi.org/10.1007/978-3-319-46520-3

Submitted to:
QAPL 2017

c© B. König, S. Küpper & C. Mika
This work is licensed under the
Creative Commons Attribution License.

PAWS: A Tool for the Analysis of Weighted Systems

Barbara König
Universität Duisburg-Essen

barbara koenig@uni-due.de

Sebastian Küpper
Universität Duisburg-Essen

sebastian.kuepper@uni-due.de

Christina Mika
Universität Duisburg-Essen

christine.mika@uni-due.de

PAWS is a tool to analyse the behaviour of weighted automata and conditional transition systems. At
its core PAWS is based on a generic implementation of algorithms for checking language equivalence
in weighted automata and bisimulation in conditional transition systems. This architecture allows
for the use of arbitrary user-defined semirings. New semirings can be generated during run-time
and the user can rely on numerous automatisation techniques to create new semiring structures for
PAWS’ algorithms. Basic semirings such as distributive complete lattices and fields of fractions can be
defined by specifying few parameters, more exotic semirings can be generated from other semirings
or defined from scratch using a built-in semiring generator. In the most general case, users can define
new semirings by programming (in C#) the base operations of the semiring and a procedure to solve
linear equations and use their newly generated semiring in the analysis tools that PAWS offers.

1 Introduction

In recent times, modelling techniques have shifted from a purely acceptance-based reasoning to one that
takes various notions of weight and quantities into consideration. The theory of weighted automata gives
rise to a flexible framework, where acceptance behaviour can be quantified in numerous ways. Probabilities
are commonly used to express the likelihood of making a given transition, whereas the tropical semiring
is often used to denote the cost of making a transition. Due to the great variety of semirings the theory of
weighted automata can be applied to a multitude of different fields of interest, such as natural language
processing, biology or performance modelling (see e.g. [12]). Typical questions regarding weighted
automata concern their language (or traces), for instance language equivalence. Due to the generality of
the notion of weighted automata, they are a versatile means for modelling purposes, though decidability
results are not as strong as for non-deterministic automata. In particular, it is well-known that language
equivalence is an undecidable problem for weighted automata over the tropical semiring [16]. This,
however, is not a damning result for language equivalence, since it is also well-known that language
equivalence is decidable for many other semirings such as the two-valued boolean algebra (for which
weighted automata are just nondeterministic finite automata) or fields (where decision procedures run in
polynomial time [14, 7]). PAWS1 is a tool that offers algorithms to decide language equivalence and the
threshold or universality problem for weighted automata.

Based on our previous work in [15] and [5], the tool PAWS implements two different approaches
to language equivalence checks for weighted automata. One approach employs a backwards search
assuming at first that all states are language equivalent and exploring words from the end to the beginning
to determine non-equivalent pairs of states, similar to partition refinement. Different from usual partition
refinement algorithms, this algorithm does not necessarily terminate at the moment when the partitions
cannot be further refined in one step, because refinements can happen at a later point of time. The
termination condition has to be chosen differently here, and as expected, the algorithm does not necessarily

1The tool can be downloaded from www.ti.inf.uni-due.de/research/tools/paws/

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Paws: Program for the Analysis of Weighted Systems

terminate for all semirings (see the undecidability result by Krob [16]). However, for many semirings
it does and in either case it is always a suitable semi-decision procedure for the absence of language
equivalence. This approach is closely related to the line of work started by Schützenberger, [18] and later
generalised in [3], using the notion of conjugacy.

Additionally, PAWS offers a second approach to decide language equivalence [5], which stands in the
tradition of Bonchi’s and Pous’ seminal work on equivalence checks for NFAs using up-to techniques [6].
Here, a language equivalence relation on vectors is built, starting from the initial pair of vectors suspected
to be language equivalent. As the algorithm progresses, it builds a language equivalence relation similar
to a bisimulation relation and stops at the moment when a suitable relation proving language equivalence
is found, or a witness to the contrary appears. The algorithm works up-to congruence and therefore prunes
the relation on-the-fly, dropping redundant vector pairs. The flexibility of this optimised variant of the
algorithm is reduced when compared to the partition refinement algorithm, but it can still be used for a
variety of user-generated semirings, such as rings and l-monoids, and can lead to an exponential speed up
in some cases. Based on a similar approach, PAWS also offers a decision procedure for the universality
problem for weighted automata over the tropical semiring of the natural numbers, which is potentially
exponentially faster than a naive approach due to Kupferman et al. [2]. The universality problem checks
whether from a given starting vector, all words have a weight smaller than or equal to a given threshold.

Finally, PAWS also considers conditional transition systems, which, rather than adding weights to
transitions, extend traditional transition systems by means of conditions, or product versions to enable
flexible modelling of software product lines, while taking possible upgrades between different products of
a software product line into account [8]. For these kinds of systems, bisimulation rather than language
equivalence is considered, because the user experience for different products is in the focus. The
bisimulation check can be performed on any finite distributive lattice defined via its set of join irreducible
elements. Alternatively, a BDD-based implementation of (certain) lattices is offered and allows for a
significantly faster bisimulation check as presented in [4]. Again, the bisimulation check is parametrised
over the lattice used and can accept any lattice, either defined directly via its irreducible elements, or using
the BDD-based approach, as input.

A key feature of PAWS is its extensibility. The algorithms are parametrised over the semiring and
it is therefore possible to use the algorithms PAWS offers, not only for the semirings that come pre-
implemented, but also for newly generated semirings. For that purpose, PAWS offers ways of adding
new semirings and executing algorithms for these semirings. All algorithms are implemented generically
and can be used for various semirings or l-monoids, provided all necessary operations such as addition,
multiplication, and solving linear equations are specified. Therefore, PAWS is equipped with a semiring
generator that allows to generate new semirings that are not pre-implemented and to define weighted
automata or conditional transition systems over these. Specifically, we have built several layers of
automatisation, so that whenever one, e.g., defines a complete distributive lattice, it suffices to give a
partial order, from which the lattice of downward-closed sets is generated [11] and all operations are
provided automatically. Building semirings from other semirings using crossproducts is almost completely
automatised and modulo rings are automatised using Hensel liftings [10]. In addition, it is possible to add
arbitrary semirings by providing code for the operations mentioned before.

2 Preliminaries: System Types and Decision Problems

Here we give a short overview over the systems that PAWS can analyse, i.e. weighted automata and
conditional transition systems. For that purpose we require the notions of semirings and distributive

B. König, S. Küpper & C. Mika 3

lattices.

• A semiring is a tuple S= (S,+, ·,0,1) where (S,+,0) is a commutative monoid, (S, ·,1) is a monoid,
0 annihilates · (i.e., 0 · s1 = 0 = s1 ·0) and · distributes over + (i.e., (s1 + s2) · s3 = s1 · s3 + s2 · s3
and s3 · (s1 + s2) = s3 · s1 + s3 · s2, for all s1,s2,s3 ∈ S).

• A complete distributive lattice is a partially ordered set (L,v) where for all subsets L′ ⊆ L of L
the infimum

d
L′ and the supremum

⊔
L′ w.r.t. the order v exists and infimum distributes over

finite suprema: (`1t `2)u `3 = (`1u `3)t (`2u `3) for all `1, `2, `3 ∈ L. Together with >=
⊔

L and
⊥=

d
L, a complete distributive lattice forms a semiring L= (L,t,u,⊥,>).

• An l-monoid is a lattice (L,t,u,⊥,>) together with a monoid (L, ·,1) such that · distributes over
t. If ⊥ annihilates ·, i.e. ⊥· `=⊥ for all ` ∈ L, then the l-monoid can be regarded as a semiring
(L,t, ·,⊥,1).

A weighted automaton (WA) can be understood as a non-deterministic automaton that additionally
carries weights from a given semiring S on each transition, as well as a termination weight for each
state. Rather than accepting or rejecting a word w, a state x in a weighted automaton associates it with a
value from S. This value can be obtained as follows: Take the sum of the weight of all w-labelled paths
p starting in x. The weight of a path p is the product of all transition weights along p, including the
termination weight. Consider for instance the following simple weighted automaton over the field R:

A

B C

a,2 a,3

1

b,2

2

b,2

1

The weight of the word ab in state A can be computed as follows: there exist two paths to consider,
(A,a,B,b,B) and (A,a,C,b,C). The first path has the weight 2 · 2 · 2 = 8 and the second path has the
weight 3 ·2 ·1 = 6, so overall, the weight of the word ab in A is 8+6 = 14. For weighted automata, PAWS

offers an algorithm to decide which pairs of states are language equivalent, i.e. assign the same weight to
all words. In general, this problem is undecidable, but for many specific semirings (e.g. the reals) it is
decidable.

PAWS offers two algorithms to decide language equivalence. The more generally applicable algorithm
called Language Equ.(Complete) in the tool, can be applied to any semiring and yields, if it terminates, a
complete characterisation of language equivalence in the automaton.

For complete and completely distributive lattices, and more generally, completely distributive l-
monoids, an optimisation up to congruence is available (Language Equ.(Up-To)). This algorithm checks
whether two initial vectors are language equivalent by building a language equivalence relation on vectors
over the semiring and pruning the relation by congruence closure, i.e. pairs of vectors that are already in
the congruence closure of previously found pairs of vectors, are discarded.

One semiring, where language equivalence is undecidable is the tropical semiring over the natural
numbers (N0∪{∞},min,+,∞,0), as shown by Krob [16]. However, the universality problem is decidable
in this case. The universality problem asks, for any given number n ∈ N0, whether the weight of all words
from a given starting vector is bounded by n.

4 Paws: Program for the Analysis of Weighted Systems

All algorithms for these problems require a method for solving linear equations over the semiring.
PAWS also analyses a second type of systems: conditional transition systems (CTS) [4, 1]. CTS are

defined over a finite partial order of conditions. Each transition is assigned to a downwards closed set
of conditions under which the transition may be taken. Before execution, one condition is fixed and
all transitions that carry the respective condition remain active and all other transitions remain inactive.
Afterwards, the CTS evolves just like a traditional labelled transition system. At any point though, a
change of conditions can occur by going down in the order. If the condition is changed, so do the active
transitions and additional transitions may become available. Note that due to the requirement that all
transitions carry a downwards closed set of conditions, only additional transitions can appear, no transition
can be deactivated by performing a change in conditions. Therefore this change of conditions can be
considered as an upgrade of the system. Also note the strong relation to complete distributive lattices:
Every finite partial order gives rise to a lattice by considering all downwards closed sets of elements
ordered by inclusion. And vice versa, every finite distributive lattice can be represented in this way [11].

Now consider the following CTS defined over the set of conditions {ϕ,ϕ ′}, where ϕ ′ ≤ ϕ .

A

B C

a,{ϕ ′} a,{ϕ,ϕ ′}

b,{ϕ,ϕ ′} b,{ϕ ′}

Furthermore assume we are starting in state A and under the initial condition ϕ . Then only the
transitions from B to B and from A to C are available. If we choose to make a step from A to C via the
a-labelled edge, we cannot do any further steps, unless we first perform an upgrade to ϕ ′, which allows us
to use the b-loop in state C.

For CTS we are interested in conditional bisimulation. Two states are conditionally bisimilar, if there
exists a conditional bisimulation relating the states. A conditional bisimulation is family of traditional
bisimulations Rϕ , one for each condition ϕ , on the respective underlying transition systems. For two
conditions ϕ ′ ≤ ϕ it must hold that Rϕ ′ ⊇ Rϕ , which intuitively means that if two states are bisimilar
under ϕ , they must also be bisimilar under every smaller condition ϕ ′. Furthermore, the standard transfer
property for bisimulations must be satisfied.

In [4] we have shown how to model a small adaptive routing protocol as CTS.
Summarizing, the problems PAWS solves and the corresponding algorithms and semirings are displayed

in the following table:
Problem Algorithm Semiring Model

Language equivalence (all pairs) Language Equ.(Complete) any semiring WA
Language equivalence (initial vectors) Language Equ.(Up-To) l-monoids, lattices WA

Universality Problem Universality Tropical Semiring WA
Conditional bisimilarity CTS Bisimilarity finite lattice CTS

3 Design and Usage

In this section, we give an overview of some design decisions and the usage of the tool. First, we mention
the basic structure of the tool and then discuss some of the problems and math-related features of the tool.

B. König, S. Küpper & C. Mika 5

Furthermore we explain how to work with PAWS.

3.1 Design

PAWS is a Windows tool offering a complete graphical interface, developed in Microsoft’s Visual Studio
using C#. The program is divided into two autonomous components:

Both components are designed according to the MVC (Model View Controller) pattern. In the sequel, we
will discern these two program parts, as their interaction is rather limited, allowing them to be considered
as separate concerns.

3.1.1 The Semiring Generator

The development of the semiring generator started in a master’s thesis [17]. It supports five different
generation processes, which, for clarity, are equipped with five separate input forms. The semiring
generator supports three fully automated cases:

• Direct products

• Fields of fractions

• Field extensions for Q

Furthermore, there are two options to generate code based on user implementations:

• l-monoids

• Arbitrary semirings

Note that generation of finite lattices and modulo semirings is less involved and is done directly within
the analysis component.

For the generation of source code we use CodeDOM of the .NET Framework, which enables code
generation based on object graphs. The five processes are implemented via one superclass and three
derived classes. The superclass contains all methods for creating if-statements, for-loops or useful
combinations of these, based on predefined patterns. Except for the direct product generator, every class
uses the constructor generating methods of the superclass. Most of the differences between the classes
are reflected in the methods for generating the binary operators. Concerning methods for solving linear
equations we are offering two templates: a naive implementation of the Gaussian algorithm and one
method for l-monoids, based on the residuum operator [9].

6 Paws: Program for the Analysis of Weighted Systems

With code generation, one always has to face the question of how to give the program, specifically
the analysis component of PAWS, access to the newly generated classes. We decided to use the Mi-
crosoft.Build.Execution namespace for updating the analysis tool. This decision avoids creating multiple
DLL files, which would be the case with a pure reflection-based solution to the problem. However,
reflection is used to solve another difficulty. Due to the combination of different semirings or data types
as elements of a new semiring, a dynamic approach is required to enable the automated generation of
constructors with a string parameter, specifying the semiring value.

PAWS also manages the names of the semiring classes in individual text files. First, this prevents a
user from overwriting an already fixed class name. Another advantage is that by using System.Activator,
an instance can be created dynamically during runtime without knowing the class name at the level of
program design. Hence, both components use consistent config files, which is ensured by updating the
corresponding config file if one of the program parts creates or deletes a semiring. But when deleting a
semiring that has already been used to create and store an automaton or transition system, conflicts may
occur with the serialised objects and thus with the user’s storage files. Therefore, deletion of semirings
must be dealt with separately. A semiring can only be deleted or modified if it has not been used in the
previous session within an automaton.

3.1.2 The Analysis Tool

As already mentioned, for both program parts MVC is used to implement the user interface. The main
focus of PAWS is to give the user the tools to define an automaton in order to be able to subsequently
analyse it with the supported algorithms. In order to implement this as dynamically as possible, we have
opted for a generic implementation. Therefore, the class Matrix〈T 〉 (where T is the generic type of the
semiring), which implements automata in a matrix representation, is the core of the tool’s architecture.

The main argument for the generic approach is that the algorithms for analysis of an automaton are based
on the basic operators of a semiring. A further method is needed to solve systems of linear equations,
which is also defined for each semiring within PAWS. It is therefore recommended to use a generic class
that includes all the methods of analysis, which in turn dynamically call the corresponding operators or
methods of the currently used semiring. This dynamic approach is thus combined with reflection.

Therefore, the management of automata created by the user requires a generic implementation as well.
The model for the matrices is therefore also generic and thus it makes sense to manage several semiring
models by the controller.

Because of the generic approach, automatically checking the correctness of the user input proves
to be problematic when the user has generated his or her own semiring and has implemented a string

B. König, S. Küpper & C. Mika 7

constructor to read semiring elements from input strings without input verification. In this case PAWS can
not check whether the input is well-formed, this has to be taken care of in the user-implemented method.
Such semirings can not be further used to generate other semirings.

A further design decision is that one can create finite semirings directly within the analysis component
of PAWS. The reason why we chose to not move this option to the generator is that for finite lattices
and modulo semirings over the integers no new classes have to be generated nor is there any need for
new source code at all. In this case, it is sufficient to configure template classes for the corresponding
semirings via static variables that contain the required information about the semiring. The operators are
designed to behave according to the configuration of the class. In such cases, the analysis program must
also access the configuration files in order to make the extensions known to the semiring generator.

As an additional feature, we have also integrated GraphViz2 into the tool, as it allows visualization of
weighted automata, if desired by the user.

3.2 Usage

We will discuss the usage of the tool separately for the two individual components of PAWS, hence this
section contains subsections giving details about the following two components.

• The semiring generator to build and provide the required semirings over which automata can be
defined. This generator is used to generate semirings that cannot be obtained in a fully automated
way and supports some automatic generations.

• The analysis tool that allows the user to choose a previously generated semiring, one of the
semirings that come built-in with the PAWS or to build a lattice and then to define automata in a
matrix representation over those lattices. Matrices are then interpreted as weighted automata or
conditional transition systems (CTS) and can be used to compute language equivalence for weighted
automata with two different approaches, decide the threshold problem for weighted automata over
the tropical semiring of natural numbers or to compute the greatest bisimilarity of a CTS.

3.2.1 The Semiring Generator

The semiring generator is used to generate the semirings under consideration. In order for a semiring to
be usable within the context of PAWS, the structure needs to define the following components:

• A universe which contains all elements of the semiring. All predefined datatypes from C#, as well
as combinations of them can serve as universes.

• An addition operator + of the semiring.

• A multiplication operator ∗ of the semiring.

• One() and Zero() methods, which return the units of addition and multiplication.

• A method for solving linear equations over the semiring.

While the first four components are necessary to define a semiring in a mathematical context either
way, the procedure to solve linear equations is an additional requirement – one that PAWS aims at reducing
as much as possible – but in order to provide the greatest amount of flexibility possible, the tool offers the
option to define a procedure to solve linear equations from scratch.

2www.graphviz.org

8 Paws: Program for the Analysis of Weighted Systems

3.2.2 The Analysis Tool

The analysis component is designed to offer generic algorithms applicable to numerous predefined or
user-defined semirings. Some of the algorithms can however only be used with specific (types) of
semirings. The most general algorithm is the language equivalence check, for which all semirings are
eligible. Conditional Transition Systems are only defined over lattices, therefore, the bisimulation check
is limited to lattice structures. However, the user still has the choice between two different ways of
dealing with lattices: representing elements of the lattice as downwards closed sets of irreducibles via
the Birkhoff duality [11], applicable to all finite distributive lattices, or representing them using binary
decision diagrams (BDDs). The BDD variant is more restrictive and mainly designed for the application
to CTS. Here, the irreducibles are required to be full conjunctions of features from a base set of features,
ordered by the presence of distinct upgrade features. Lastly, the threshold check can only be performed
over a single semiring, the tropical semiring over natural numbers.

The general workflow of the analysis tool is as follows:

. Choose a semiring

. Generate a matrix over this semiring, representing a weighted automaton or a conditional transition
system
Alternatively: Choose the matrix from a list of matrices that have been generated previously

. Start the algorithm and provide – if necessary – additional input

Additional input comes in two forms: starting vectors and the threshold to be checked against in case of
the threshold algorithm. Depending on the semiring of choice, questions regarding language equivalence
might not be decidable, leading to non-termination of the corresponding procedure in PAWS. In order
to deal with this problem and to allow abortion of an overlong computation, the actual computation is
delegated to a separate thread that can at any time be aborted by clicking a red button labelled “Abort”. In
that case all intermediate results are discarded.

B. König, S. Küpper & C. Mika 9

Note that only the two language equivalence-based algorithms can run into non-termination issues.
For the CTS bisimulation check, as well as the threshold problem on the tropical semiring of natural
numbers, termination is always guaranteed. However, the runtime of CTS bisimulation check can be
doubly exponential in the number of features under consideration – because the lattice is the set of
all possible configurations, which in turn are all possible conjunctions over the features. Using the
BDD-based implementation of lattices – which is particularly suited to the needs of CTS modelling –
this explosion is mitigated in many cases, but it can not be ruled out completely. On the other hand, the
BDD-based modelling only allows for special lattices to be modelled, i.e. those that arise as the lattices
constructed from a set of features and upgrade features, whereas the variant called FiniteLattice allows for
arbitrary (finite, distributive) lattices to be represented. In this case, lattices are represented via the partial
order of irreducible elements, using Birkhoff’s representation theorem [11].

Here we do not give any runtime results, but refer the reader to [4, 5] where we describe several case
studies and list runtime results.

4 GUI Overview of PAWS

In this section, we demonstrate the handling of the various features and options that PAWS offers. First, we
will present the semiring generator. In this case, we briefly explain a fully automated generation and the
even more complex case, in which, apart from the constructor, the user has to specify the implementations
on his or her own. We then illustrate the various possibilities to use the analysis component of PAWS in a
short overview.

10 Paws: Program for the Analysis of Weighted Systems

4.1 The Semiring Generator

First, we consider a fully automated generation demonstrated by the direct product input-mask (Figure 1
and 2). Then, in Figure 3 the console informs the user that the generated source code is compilable. In
case the user specifies some code on his or her own, the console will display suitable compilation error
messages. Figures 4 and 5 depict the use of the input mask for user-dependent implementations.

Figure 1: Lower ellipse: Choose an input mask.
Top ellipse: Specify the name of the new semiring
class.

Figure 2: Specify a direct product, add semirings
as member fields to the class.

Figure 3: Pressing the button will generate the code visible in the right-hand text-box. The console at the
bottom informs the user, whether the source code was compiled and successfully added to the analysis
component of PAWS.

4.2 The Analysis Tool

In this section the use of the PAWS analysis component is presented in a brief overview. The illustrations
serve to explain our intuition behind the design and the use of PAWS.

In Figure 6 and 7 the first steps for creating a weighted automaton are illustrated. After generating a
matrix (Figure 8 and 9), the user can choose one of the available algorithms and wait until the result of the
computation is displayed inside the text area (Figure 10).

B. König, S. Küpper & C. Mika 11

Figure 4: Top ellipse: Specify the type of the class.
Bottom ellipse: Select write code to implement
the addition (+).

Figure 5: The text box for entering source code
will be enabled after selecting write code as shown
in Figure 4.

Figure 6: Top ellipse: First determine the name.
Bottom ellipse: Type in the number of states.

Figure 7: Choose the semiring.

With the PAWS analysis component, besides automata, also finite semirings can be generated and stored
for further semiring generation as well as for the analysis.

5 Conclusion, Future Work and Related Work

We have seen that PAWS is a flexible tool to analyse the behaviour of weighted automata and conditional
transition systems. The generic approach allows for adding new semirings with a varying degree of
support by the tool itself.

Concerning related approaches, we are not aware of analysis tools for language equivalence and the
threshold problem for weighted automata.

For the problem of generating semirings dynamically, there exists previous work for solving fixpoint
equations over semirings by Esparza, Luttenberger and Schlund [13]. In [13] FPSOLVE is described, a
C++ template based tool for solving fixpoint equations over semirings. That is, the tool has a different
application scenario than ours. However, the tools share similarities since in FPSOLVE the user also has
the possibility to generate new semirings. For this, only the addition, multiplication and Kleene star must
be implemented. However, a string constructor must also be specified without automatic support and the
main method must be adjusted with the corresponding command-line. PAWS is designed to enable the

12 Paws: Program for the Analysis of Weighted Systems

Figure 8: After a semiring has been selected, a
description of the expected input is shown above
the input area for the matrix.

Figure 9: By pressing the button Generate Matrix,
the matrix is generated in the tool and listed ac-
cording to its form (Weighted automaton or CTS).

Figure 10: After starting one of the supported algorithms for a transition system, the analysis result will
be displayed in the bottom text area.

generation of new semirings for solving linear equations using a graphical user interface and does not
change already existing code, which is not part of a semiring class.

In contrast to this, work has already been done on an analysis tool for featured transition systems –
which are basically CTS without a notion of upgrades – to analyse software product lines wrt. simulation.
In their work [8], Cordy et al. have implemented their model using BDDs as well, yielding a similar speed
up as our own approach. The significant differences here lie in the notion of behaviour, since Cordy et
al. have focused on simulation relations, whereas we are concerned with bisimulations. Furthermore we
capture a notion of upgrade and thus support partial orders of products instead of just abritrary sets of
products.

We intend to develop PAWS further in several ways. We are looking for new classes of semirings
where solutions of linear equations can be effectively computed, in order to equip those semirings with an
improved support from PAWS. Furthermore, we are interested in analysing more extensive case studies,
where we will use PAWS to conduct all required analyses.

References
[1] Jiřı́ Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius & Alexandra Silva (2012):

A Coalgebraic Perspective on Minimization and Determinization. In: Proc. of FOSSACS ’12, Springer, pp.
58–73. LNCS/ARCoSS 7213.

B. König, S. Küpper & C. Mika 13

[2] Shaull Almagor, Udi Boker & Orna Kupferman (2011): What’s Decidable about Weighted Automata? In:
Proc. of ATVA ’11, Springer, pp. 482–491. LNCS 6996.

[3] Mariel-Pierre Béal, Slyvain Lombardy & Jacques Sakarovitch (2006): Conjugacy and Equivalence of Weighted
Automata and Functional Transducers. In: Prof. of CSR ’06, Springer, pp. 58–69. LNCS 3967.

[4] Harsh Beohar, Barbara König, Sebastian Küpper & Alexandra Silva (2016): Conditional Transi-
tion Systems: A Model for Software Product Lines with Upgrades. Unpublished, available from
http://www.ti.inf.uni-due.de/fileadmin/public/koenig/cts.pdf.

[5] Filippo Bonchi, Barbara König & Sebastian Küpper (2017): Up-To Techniques for Weighted Systems. In: Proc.
of TACAS ’17, Springer. LNCS, to appear.

[6] Filippo Bonchi & Damien Pous (2013): Checking NFA equivalence with bisimulations up to congruence. In:
Proc. of POPL ’13, ACM, pp. 457–468.

[7] Michele Boreale (2009): Weighted bisimulation in linear algebraic form. In: Proc. of CONCUR ’09, Springer,
pp. 163–177. LNCS 5710.

[8] Maxime Cordy, Andreas Classen, Gilles Perrouin, Pierre-Yves Schobbens, Patrick Heymans & Axel Legay
(2012): Simulation-based abstractions for software product-line model checking. In: Prof. of ICSE ’12, pp.
672–682.

[9] Raymond A. Cuninghame-Green (1979): Minimax algebra. Lecture Notes in Economics and Mathematical
Systems, Springer-Verlag.

[10] Abhijit Das & C. E. Veni Madhavan (2009): Public-Key Cryptography: Theory and Practice. Pearson
Education. pp. 295-296.

[11] Brian A. Davey & Hilary A. Priestley (2002): Introduction to lattices and order. Cambridge University Press.
[12] Manfred Droste, Werner Kuich & Heiko Vogler, editors (2009): Handbook of Weighted Automata. Springer.
[13] Javier Esparza, Michael Luttenberger & Maximilian Schlund (2014): FPsolve: A Generic Solver for Fixpoint

Equations over Semirings. In: Proc. of CIAA ’14, Springer, pp. 1–15. LNCS 8587.
[14] Stefan Kiefer, Andrzej S. Murawski, Joel Ouaknine, Bjoern Wachter & James Worrell (2011): Language

Equivalence for Probabilistic Automata. In: Proc. of CAV ’11, Springer, pp. 526–540. LNCS 6806.
[15] Barbara König & Sebastian Küpper (2016): A generalized partition refinement algorithm, instantiated to

language equivalence checking for weighted automata. Soft Computing, pp. 1–18, doi:10.1007/s00500-016-
2363-z. Available at http://dx.doi.org/10.1007/s00500-016-2363-z.

[16] Daniel Krob (1994): The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. International Journal of Algebra and Computation 4(3), pp. 405–425.

[17] Christine Mika (2015): Ein generisches Werkzeug für Sprachäquivalenz bei gewichteten Automaten. Master’s
thesis, Universität Duisburg-Essen.

[18] Marcel-Paul Schützenberger (1961): On the Definition of a Family of Automata. Information and Control
4(2–3), pp. 245–270.

http://dx.doi.org/10.1007/s00500-016-2363-z
http://dx.doi.org/10.1007/s00500-016-2363-z
http://dx.doi.org/10.1007/s00500-016-2363-z

Submitted to:
QAPL’17

c© S. Brandauer & T. Wrigstad
This work is licensed under the
Creative Commons Attribution License.

Mining for Safety using Interactive Trace Analysis

Stephan Brandauer

Uppsala University

stephan.brandauer@it.uu.se

Tobias Wrigstad

Uppsala University

tobias.wrigstad@it.uu.se

This paper presents the results of a trace-based study of object and reference properties on a subset of
the DaCapo benchmark suite with the intent to uncover facts about programs that can be leveraged by
type systems, compilers and run-times. In particular, we focus on aliasing, and immutability, based on
their recent application in the literature.

To facilitate analyses like this one, we previously created Spencer (http://spencer-t.racing,
[8]), a web based tool and API that hosts dynamic trace data and enables researchers to query and
analyse the data. In this paper we only use data that are openly accessible via Spencer’s API – all code
written for this paper (not counting Spencer itself) amounts to 13 lines of bash and 260 lines of python
to plot the results.

We find that while Java allows aliasing and mutation by default, objects are often unique, unique
on the heap, immutable, or stack-bound – 97.7% of objects fulfill at least one of these properties.
Furthermore, uniqueness and immutability, or their absence, are class-properties, not object-properties:
e.g.,, it is surprisingly rare for classes to produce both immutable and mutable instances.

Although we use a different, more fine-grained, methodology, our findings confirm prior results.

1 Introduction

In this paper, we study the object graphs that make up object-oriented programs to uncover common
properties about the object structures and how object aliasing and mutation are used. Our main motivation
for this work is the wealth of work on controlling and managing object aliasing, e.g.,various proposals
for ownership [10, 13] and uniqueness [6, 7], and various forms of immutability [18, 22]. With this study,
we wish to understand how “programs in the wild” (where such properties are not enforced) compare to
such proposals (which impose restrictions), and to motivate their existence. We seek to answer questions
such as “how many objects are aliased?”, or “are immutable objects used for longer periods of times than
non-immutable objects?” There is a substantial amount of programming languages work on abstractions
like uniqueness, immutability, and combinations thereof [13, 10, 2, 1, 15].

This is not the first paper to ask these or similar questions, or to study the shape or structure of the
heap (see e.g.,[16, 17, 22, 20, 9, 14, 18]) and in some respects, this paper reproduces results studied by
other authors using different, and arguably more fine-grained, techniques. Whereas prior work approaches
these questions using static analysis or heap snapshotting, we employ a tracing approach in which we are
able to study the life-cycle of all individual objects in a running program. In particular, our traces include
all reads and writes to local variables, which are ignored by previous dynamic analyses. This avoids the
conservative over-approximation built into static analysis, and avoids false positives due to incomplete
data when snapshotting. Thus, to the best of our knowledge, we are the first to attempt to answer such
broad research questions with such high-resolution data.

The data sets (the traces in this paper, combined, weigh in at 680GB) are hosted by S P E N C E R

(http://spencer-t.racing, [8]), a web based tool that lets users query dynamic program traces using
their web browser. All results in this paper are produced using Spencer’s data.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://spencer-t.racing
http://spencer-t.racing
http://spencer-t.racing

2 Trace Studies of Uniqueness, Immutability

Name Objects Log
1. luindex 81,158 5.8GB 37.906.637
2. pmd 131,462 2.7GB 18.107.255
3. fop 521,789 10GB 63.957.143
4. batik 526,945 21GB 134.864.425
5. xalan 1,133,391 48GB 302.083.030
6. lusearch 1,212,743 61GB 380.164.919
7. sunflow 2,419,900 91GB 569.648.600
8. h2 6,655,852 207GB 1.468.550.379
9. avrora 932,085 236GB 1.514.972.478

Total: 13,615,325 ≈680GB 4,490,254,866

Table 1: Currently loaded benchmarks, a similar list can be found in the tool: http://spencer-t.
racing/datasets.

The main contributions of this paper are the results from analyses of program traces to find evidence
of immutability, and uniqueness from 9 programs from the DaCapo benchmark suite and a comparison
with and discussion of results from prior work. We use a more fine-grained approach than previous studies
by considering all program events, and stack variables.

2 Methodology

We employ a trace-based method to study the behaviour of objects. Our corpus of programs is the DaCapo
benchmark suite release 9.12 [3], limiting ourselves to 9 programs1 because of the volume of data involved.
This suite contains a wide range of workloads, including simulations of micro controllers (avrora), a
static analysis tool (pmd), an in-memory database (h2), and others. Table 1 lists the benchmarks we are
studying. Tracing allows us to track not only how aliases to each object are created, but where they are
stored, and how they are used at a level which previous dynamic analyses do not do. For the 9 programs in
our study, we recorded ≈ 4.5 ·109 events such as object creation, field read, field write, etc. To facilitate
studies like this one, we created Spencer, a web service that hosts large program traces, and provides a
user interface and API to query these datasets. All data used in this paper (and more) can be accessed
openly, and we will provide appropriate links in the paper.

Spencer uses a JVMTI agent loaded into the a stock JVM that listens to events in the running program.
Because of limitations in these events (e.g.,JVMTI does not allow events on stack variables), we also
instrument the loaded Java byte code on the fly to emit additional events2. This is done on the fly with no
need to manipulate program sources, and automatically includes any loaded libraries in the analysis. At
the time the analysis was made, the tooling infrastructure consisted of more than 10.000 LOC of a mix
of C++, Java, Scala, and Javascript. These files are loaded into a relational database (PostgresSQL) and
hosted by a web server. The web server provides a user interface for users to interactively explore data sets
(Figure 1), and also a JSON API (http://spencer-t.racing/doc/api). For both web based UI and
API, the concept of a query is central: a query is a selection operation on the set of objects in a trace – it
analyses the whole trace, and returns, as its result a set of objects. Queries can be combined by using query

1avrora, batik, fop, h2, luindex, lusearch, pmd, sunflow, and xalan.
2Our events: object creation; method entry and exit; field loads and stores; variable loads and stores.

http://spencer-t.racing/datasets/luindex
http://spencer-t.racing/datasets/pmd
http://spencer-t.racing/datasets/fop
http://spencer-t.racing/datasets/batik
http://spencer-t.racing/datasets/xalan
http://spencer-t.racing/datasets/lusearch
http://spencer-t.racing/datasets/sunflow
http://spencer-t.racing/datasets/h2
http://spencer-t.racing/datasets/avrora
http://spencer-t.racing/datasets
http://spencer-t.racing/datasets
http://spencer-t.racing/doc/api

S. Brandauer & T. Wrigstad 3

combinators, and the server will cache results that it computed in the database to improve performance.

2.1 Queries

Queries being selections, the queries that a user submits are literally translated to SQL. To run a query, it
is enough to access the URL http://spencer-t.racing/query/〈datasetname〉/〈query〉, the page also contains
links to the corresponding API call that will just return the selected objects in JSON format at the bottom.

This paper is not mainly about Spencer; but we will give a brief explanation of the queries3 that we
will will use here:

Query Explanation
ImmutableObj() This query selects all objects that were modified only in their constructor,

but never after.
UniqueObj() This query selects all objects that had at most one reference from fields

or (stack-) variables at one time, but never more.
StackBoundObj() This query selects all objects that are never reachable from any field.
HeapUniqueObj() This query selects all objects that had at most one reference from fields

at one time, but any number of references from variables.
HeapDeeply(q) If q selects objects from a trace, then HeapDeeply(q) selects all the objects

that are selected by q from which, following only fields, only objects in
q are reachable.

Or(q1 . . .qN) This query selects all objects that are selected by at least one of the inner
queries.

3 The Properties of Interest in our Study

We now describe the properties of programs, individual objects and references that are the subjects of
our study. For each property, we explain it briefly; outline why it is important and how it is used in the
programming language literature; and state the definitions of what we have studied in our traces in relation
to the property. A discussion about each property is found in conjunction with the results.

3.1 Property 1: Uniqueness

Unique references are references that have no aliases. Unique references simplify reasoning about software,
both by programmers and tools. Verifying properties of an object is much easier in the absence of aliasing.
When unique references go out of scope, the object they reference can be free’d. Many optimisations are
unlocked in compilers due to alias-freedom.

Studying uniqueness through heap snapshots as done by Potanin et al. [20] is simple: count the in-
degrees of incoming reference for all objects. However, snapshots have the problem that they are not aware
of behaviour in between snapshots – when “no one is looking”. We study two definitions of uniqueness:

Heap-Uniqueness A reference is heap-unique if there is, at any one time, at most one reference to it from
a live object on the heap, with no restrictions on the number of field references.

3These queries are links in the PDF file. Clicking them will bring you to the user interface.

http://spencer-t.racing/query/test/ImmutableObj()
http://spencer-t.racing/query/test/UniqueObj()
http://spencer-t.racing/query/test/StackBoundObj()
http://spencer-t.racing/query/test/HeapUniqueObj()
http://spencer-t.racing/query/test/HeapDeeply(ImmutableObj())
http://spencer-t.racing/query/test/HeapDeeply(ImmutableObj())
http://spencer-t.racing/query/test/Or(UniqueObj()%20StackBoundObj())

4 Trace Studies of Uniqueness, Immutability

(a) The percentage of objects that are selected by a query,
and a sample of them.

(b) Visualisation of the life time of selected objects (the
difference between the event index of the last access to
the object and the first).

Figure 1: The Spencer user interface as seen from a web browser.

Uniqueness A reference is unique if there is at most one reference to it from either variables or fields.
Even though this definition seems to be very constraining, we shall see that a considerable amount
of objects and fields fulfill it.

The properties are captured by the Spencer queries HeapUniqueObj()) and UniqueObj(), respectively.

3.2 Property 2: Immutability

Immutable objects are objects that will not change. A classic example of immutable objects in the Java
world are strings and boxed primitives such as Integer and Boolean. Immutability is a powerful property
and gives similar reasoning power as uniqueness: a value will not change under foot. The recent years
have seen several designs of type systems for Java-like object-oriented programming languages with the
aim of simplifying concurrent programming that use some form of immutable object to share data without
risking data-races, e.g.,[5, 11, 4, 12, 19]. Java does not support immutable objects except for the ability to
declare a field as final¸ (a final¸ field has to be assigned to in the object’s constructor, and it can never be
assigned to outside of the object’s contstructor). This is a limited support, e.g., cannot express construction
of cyclic immutable structures, or initialisation that is distributed over several parts of a program.

We explore the presence of immutability in three forms:
Shallow-Immutable An object is shallow immutable if its fields are never written to – except in its

constructor. In Java, this could be handled by final fields, unless the initialisation of the object is
complicated or requires some form of delay.

Deeply-Immutable An object is deeply immutable if it is immutable and all its fields are deeply immut-
able. Most immutability constructs that appear in the literature rely on deep immutability.
The properties are captured by the Spencer queries ImmutableObj()) and Deeplu(ImmutableObj()),
respectively.

http://spencer-t.racing/query/test/HeapUniqueObj()
http://spencer-t.racing/query/test/UniqueObj()
http://spencer-t.racing/query/test/ImmutableObj()
http://spencer-t.racing/query/test/Deeplu(ImmutableObj())

S. Brandauer & T. Wrigstad 5

4 Approximating Pseudo Static Properties from Trace Data

Our analysis works on dynamic program traces. We follow an object through the program trace and
analyse whether or not the property of interest holds for that object – f.ex., whether the object is immutable.
Each analysis partitions the set of known objects into those that satisfy immutability and those that do not.
To approximate invariants that could be enforced statically – in particular captured by type system-like
annotations as in most works referred to above – we search for patterns among variables, fields and classes:
Field Analysis: For each field F of each class C, we collect all objects that any C-instance ever referred

to from the field, yielding the set OC:F .
Class Analysis: For each class C, we collect all of its instances, yielding the set OC.

These sets approximate static properties – “pseudo static properties” – in our analysis. For example, if
a field F of the class C only stores references to immutable objects (in other words, all objects in OC:F
satisfy the immutability property), we hypothesise that there is an invariant in the program that guarantees
that all references that could ever be stored in the variable are immutable, too (Section 5.1.1, Section 5.2.1)

We cover field (using the OC:F sets in Section 5.1.1 and Section 5.2.1), and classes (using the OC sets
in Section 5.1.2 and Section 5.2.2). This reasoning is, of course, unsound (it may produce false positives4)
and should be taken in context with results of sound static analyses (in Section 7) – that will, on the other
hand, produce false negatives.

5 Results

We now discuss the outcome of applying our analyses to traces from our program corpus. Since the
programs come out of the DaCapo benchmark suite, each program comes with pre-set instructions for
how to run it on representative data. Many studies of e.g., performance have been carried out on these
programs with the exact same input.

N.B: Results in this section that are not annotated with the name of a specific benchmark are to be
read as being a result that summarises the results of all benchmarks.

5.1 Uniqueness and Heap-Uniqueness

Our studies find that 24% of all objects satisfy Uniqueness and 45.5% of all objects satisfy Heap-
Uniqueness. This suggests that aliasing is more commonly happening on the stack and that many objects
are either flat or tree-shaped (in fact, the query). The results are visible in Figure 2. Especially interesting is
the fact that 97.7% of all objects are “safe” where to be safe means that they are either unique, heap-unique,
stack-bound, immutable, or deeply immutable.

In a study from 2004, Potanin et al. [20] find that 13.6% of objects had more than one field pointing
to them. We get a similar result: by running the query Or(StackBoundObj() HeapUniqueObj()) – it returns
89.5% on average5, leaving ≈ 10.5% of objects with more than one field reference. Their methodology is
different from ours in that they use snapshots of heaps, but not stacks. We are able to show that uniqueness
is much lower if stack references are also analysed. Our measuring methodology also works with a
continuous view of the heap whereas Potanin’s might overlook aliasing that happens in between snapshots.

4For example, statically capturing a property can be complicated by value-based overloading. For example, if there can be an
assignment from some not always immutable set OC′:F ′ to the variables in OC:M:F when some guard holds true, which guarantees
the particular object’s immutability.

5See http://spencer-t.racing/json/percentage/pmd/Or(StackBoundObj()%20HeapUniqueObj()), modify

http://spencer-t.racing/query/test/Or(StackBoundObj()%20HeapUniqueObj())
http://spencer-t.racing/json/percentage/pmd/Or(StackBoundObj()%20HeapUniqueObj())

6 Trace Studies of Uniqueness, Immutability

unique stack boundheap unique deeply
immutable

shallow
immutable

Safe
0%

25%

50%

75%

100%

Pr
op

.o
fo

bj
ec

ts

24.0%
39.8% 45.5% 47.3%

54.9%

97.7%

Figure 2: Proportion of Unique/Stackbound/Heap-Unique/DeepImmutable/Immutable/Safe objects.
A single object can be in several categories, objects that fulfill any definition are classified as “Safe”.
Labels denote the median percentages for all benchmarks.

5.1.1 Unique, Stack-bound, and Heap-Unique Fields

The percentage of heap-unique objects, as shown in Figure 2 varies wildly across different programs.
This might imply that heap-uniqueness as a language abstraction is doomed to work only in some niches.
However, when we look at the explain pseudo static objects that fields contain, and count those fields
that always (and those that never) contain heap-unique objects, we see clear patterns emerge. Figure 3a-e
show histograms. Each field goes in the bin according to the percentage of objects it referred to that were
selected by the respective query. The distributions are clearly bi-modal – there is lots of fields that rarely
contain objects selected, and there is lots of fields that often contain the objects selected by the query.

As programmers, knowing that x.f is immutable most of the time is of course not very helpful.
Invariants are. Our next question is therefore to ask whether there might be static invariants guaranteeing
that a property holds always or never for a given field. This question is what Figure 3f answers: it shows, in
green the proportion of fields that contained only objects with the given property, and in red the proportion
of fields that never contained objects with the given property.

A striking property of Figure 3f is that so few fields contain mixes of, say, heap-unique and unique
objects. This suggests that invariants about sharing (or its absence) are as common in the wild as invariants
about mutability.

5.1.2 Unique, Stack-bound, and Heap-Unique Classes

Our results in Figure 4 show6 that the properties under consideration are predominantly pseudo-static:
≈ 61% of all classes either always or never produce instances that are unique (12% always, and 49%
never), ≈ 63% of fields are always or never heap-unique (27% always and 36% never). We don’t mention
stack-bound objects in these field statistics, as – per definition – no fields ever refer to stack-bound objects.

This results are encouraging for creators of unique type systems as it suggests that in most cases, a
single declaration-site annotation will be enough to capture uniqueness, rather than annotations on types
at use-site. Since most programs have far fewer declarations than uses.

the URL for other datasets.
6Schema for raw data: http://spencer-t.racing/json/classpercentage/pmd/Deeply(ImmutableObj()), and

similar for other data sets and queries.

http://spencer-t.racing/json/classpercentage/pmd/Deeply(ImmutableObj())

S. Brandauer & T. Wrigstad 7

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of unique objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

fie
ld

s

luindex
pmd
fop

batik
avrora
xalan

lusearch
sunflow
h2

(a) Unique.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of heap unique objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

fie
ld

s

(b) Heap unique.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of shallow immutable objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

fie
ld

s

(c) Shallow immutable.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of deeply immutable objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

fie
ld

s

(d) Deeply immutable.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of safe objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

fie
ld

s

(e) Safe.

0% 25% 50% 75% 100%

safe

shallow immutable

deeply immutable

heap unique

unique

22%

45%

63%

47%

69%

67%

40%

26%

46%

25%

(f) Proportion of fields that contained only objects with
the given property (green), not a single one with the
given property (red), or other (proportion reported as
average of all datasets).

Figure 3: Subfigures a-e: Per syntactic field, out of all the objects it referred to, the percentage of objects
with the given property. Fields with a high proportion of objects with the property go to the right-most
bin, fields with a low proportion go to the left-most bin. Since benchmarks have different sizes, they also
access different numbers of fields in total. To account for this incidental detail, we normalise all bars such
that the bar height shows the proportion of all fields in one benchmark – in other words, the bars for one
color will always add up to 100%.

8 Trace Studies of Uniqueness, Immutability

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of unique objs. in field

0%

25%

50%

75%

100%
Pr

op
.o

fd
at

as
et

’s
cl

as
se

s

luindex
pmd
fop

batik
avrora
xalan

lusearch
sunflow
h2

(a) Unique.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of heap unique objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

cl
as

se
s

(b) Heap unique.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of shallow immutable objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

cl
as

se
s

(c) Shallow immutable.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of deeply immutable objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

cl
as

se
s

(d) Deeply immutable.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of stack bound objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

cl
as

se
s

(e) Stack-bound.

0–19% 20–39% 40–59% 60–79% 80–100%
Proportion of safe objs. in field

0%

25%

50%

75%

100%

Pr
op

.o
fd

at
as

et
’s

cl
as

se
s

(f) Safe.

0% 25% 50% 75% 100%

safe

shallow immutable

deeply immutable

heap unique

stack bound

unique

6%

28%

48%

36%

52%

49%

72%

38%

21%

27%

22%

12%

(g) This shows, for each property, the average across
data sets of the proportion of classes that only (green,
right)/never (red, left) produced instances that had the
property. We infer, unsoundly, that there exists an invari-
ant that guarantees the property holds statically. Classes
with less than 10 instances are ignored.

Figure 4: Subfigures a-f: Per class, out of all the instances this class had, proportion of objects that had the
given property. Classes with a high proportion of instances having the property go to the right-most bin;
classes with a low proportion of instances having the property go to the left-most bin.

S. Brandauer & T. Wrigstad 9

5.2 Immutability

Our analysis in Fig. 2 shows that 54.9% of all objects are shallow-immutable, and 47.9% are deeply
immutable. Especially the latter number is encouraging, as deep immutability is a very powerful property
when reasoning about code.

5.2.1 Immutable Fields

Our analysis finds that it is quite common for fields to refer to deeply immutable, and immutable objects. In
Figure 3, we see that 26% and 40% of fields refer to only deeply or shallow immutable objects respectively.
The (unsound) conclusion, again, is that up to 26%/40% of fields might be annotated with such qualifiers
in a language that provides them. On the contrary, 63%/45% of fields never contain deeply/shallow
immutable objects.

5.2.2 Immutable Classes

As shown in Figure 4, shallow and deep immutability (or their absence), just like uniqueness, is often
a property of the class, not something that varies with individual objects. A third (38%) of all classes
produce only immutable instances and half of classes never produce stack-bound objects.

5.3 Summary

In summary, we find that aliasing is more common on the heap (Fig. 2): uniqueness is more rare than
heap-uniqueness. Figure 3f shows that it is very common for fields to have pseudo-static invariants – there
seems to be a lot of knowledge in programmers’ minds that is not captured by Java semantics that does
not allow distinguishing between the green, the red, or the white part of the bars.

Previous dynamic studies have focused their attention on the objects in benchmarks – essentially
providing information like what we do in Fig. 2. What is especially interesting is that the variation in some
metrics is quite high (especially heap uniqueness and stack-boundedness), yet where we innovate – by
looking at pseudo static results – we find that this variance does not seem to carry over to fields and classes:
Fig. 3a-f and Fig. 4a-e clearly show that all programs under consideration show very similar behaviour.
This is good news for researchers who want to build, or implement language abstractions concerning the
properties under consideration.

We believe that program correctness, program understanding, and program performance all benefit
from clear expression of mutability and aliasing invariants. The reason is that, when reasoning about
a program conservatively, language semantics that allow aliasing and mutability are hindering. In nine
programs in our study, the freedom given by default by Java’s static semantics is rarely needed in practise.
Consequently, we argue that instead of enabling, it is hindering, by complicating both reasoning and
aspects of the deep run-time. This disconnect between freedoms given and freedoms used is overviewed
below:

Semantics vs. Programs
Deep immutability is not a language con-
cern

vs. Half of all objects, a quarter of all fields, and a fifth of
all classes only have deeply immutable instances (Fig. 2,
Fig. 3f, Fig. 4g)

A field’s contents can always be aliased vs. Almost half of fields are always heap-unique, almost half
are never heap-unique Fig. 3f.

Objects may live forever vs. 39.8% of objects (median), and 22% of classes are stack-
bound (Fig. 2, Fig. 4g).

10 Trace Studies of Uniqueness, Immutability

5.3.1 Uniqueness

Heap uniqueness in fields is much more common than deep immutability, and so is it in classes. Heap
uniqueness is an interesting property – it says that there is one “main alias” and several stack aliases that
all have limited life time. It can help the garbage collector, or help optimise memory layouts (heap unique
fields do not need to be represented as pointer).

For heap-uniqueness, half of all fields could be annotated unique. Thus, we find no strong evidence
that Java’s design decision in this respect is well-founded. Making fields unique rather than shared by
default would increase static safety, could potentially help the garbage collector (the referent of a unique
variable can be de-allocated when the variable goes out of scope) and improve performance (the referent of
a unique variable could be on the stack). For designers of future object-oriented programming languages,
this is encouraging.

5.3.2 Immutability

With respect to annotations on fields, shallow immutability and deep immutability are roughly as common
as Heap-Unique and Unique, respectively – as shown in Figure 3. Simple immutability semantics –
where an object is fixed right after creation – seems to be less useful in practise, e.g., because of delayed
initialisation. There have been proposals for Java [21] but, to our knowledge, none have yet been included
in a mainstream language7. From our results, these patterns that these proposals capture are common.

6 Threats to Validity

Dynamic Analysis The single biggest threat to validity of the results obtained is the fact that we use
program traces as input, not static analysis. Dynamic analysis can soundly prove some properties,
but not others – For instance, a static analysis can easily prove that a class is immutable, but not
easily prove that a class is mutable (there might be mutating code that is unreachable). Dynamic
analysis can easily prove that a class is mutable, but not that it’s immutable. As Spencer already
stores the classes that where used during an execution, it might be possible to add static analysis
facilities in the future – then, an analysis could produce both upper and lower bounds for its results.
Our traces are obtained from single runs of each program, meaning we are not able to detect
variations in the same program that stem from non-determinism. Over-interpreting our results may
perceive static invariants where there are, in fact, none. This is why our results, should be taken as
research hypotheses, rather than fact.

Non-Instrumented Classes We are unable to instrument all classes because they are loaded early in the
bootstrap process of the JVM, meaning these classes are not covered in our analysis. We mitigate
this risk by recording most classes that are being loaded and transforming them as soon as it is
safe to do so (at the start of the application). This means that – to the best of our knowledge – all
application code and all data structures of the standard library is instrumented.

Native Methods Native methods are rare, but still may cause distorted results. Most notably, we do not
get events from methods in the java.util.Arrays utility class, such as copyOf. That method
creates a new array and initialises it to contain the same values or references as an existing array.
Our analysis will miss the assignments to the array’s cells and therefore classify the newly created
copied instance as immutable (assuming it is never changed again), instead of stationary, as it

7Scala case classes with lazy fields might qualify

S. Brandauer & T. Wrigstad 11

would have been classified with a fully instrumented copyOf implementation. Since copyOf has
semantics similar to a constructor – it creates and initialises an array – we do not correct for this
case. However, it may be the case that we miss other important side effects or sharing caused by
native implementations. We plan to identify the most common native methods systematically and
call equivalent mock implementations in Java (that are instrumented) instead.

Benchmarks are Not Representative Our findings are extracted from 9 programs in the well-known
and well-studied DaCapo benchmark suite [3]. While the domains of the programs are very different,
it cannot be excluded that our benchmarks are not representative of a larger class of Java programs.
We have observed very stable behaviour, and it is interesting to grow the set of datasets, especially
to ones implemented in different languages. We’d expect to see more

Bugs in Tracing or Analysis Because of the large amount of code involved in obtaining these traces and
analysing them, it is likely that there is some bug somewhere. Due to the nature of tracing large
applications, verification is very hard except for very small programs. To mitigate this risk – or at
least make sure bugs are found, rather than stay hidden forever – our data sets are hosted publicly.
We went a long way to make the data convenient to analyse, in part because we want others to be
able to fact check our claims.

7 Related Work

A number of studies on aliasing in object-oriented or imperative programming exist in the literature. In
contrast to this work, these studies either employ static analysis, or use a snapshot-based approach to
collect data at run-time and excludes stack variables. Even though the stack is bound to be relatively small
at any given instant, most objects are referenced from the stack at some point. The difference between
Unique and Heap-Unique hints at the impact of considering/ignoring stack references. Static analysis is
by nature conservative, meaning the results from static analysis is likely to include many false negatives,
e.g., because an analysis is unable to reason about branching in the running program. On the other hand,
static analysis-based approaches are a naturally good fit for determining whether certain static information
could be propagated through the code.

Snapshot-based approaches are similar in spirit to this work, but rely on sampling instead of tracing,
leading to “lower resolution”. Following an object through its entire life-cycle through sampling suffers
from false positives (e.g., snapshots before and after a violation of a property P for object o will falsely
report P(o) holds) and, according to our methodology, false negatives (a snapshot cannot discover that
one alias is effectively buried [6]). An obvious up-side of sampling over our approach is the reduced
complexity and improved speed of gathering data.

Hackett and Aiken use static analysis on C programs [14]. They find, like we do for Java, that most
fields hold unaliased objects, but are unable to reason about the proportion of unaliased object at run-time
for particular program runs. Similar to our findings, but for structs (which importantly lack a this pointer),
how an object is aliased is a declaration-site property (per struct) not a use-site property (per “object”).
Following their static analysis approach is less feasible in Java programs because of the additional problems
that must be solved, such as dealing with dynamic dispatch and dynamic code generation.

Unkel and Lam [22] use static analysis on Java benchmarks and open source programs to detect the
number of stationary fields. Nelson et. al later study the same property using dynamic analysis [18]. The
find the number of stationary fields to be in the range of 55–82% in a variety of programs (the static
analysis giving the lower bound and the dynamic analysis giving the upper bound). We measure a stronger
property of stationary objects, which are objects with only stationary fields. Our findings are in line with

12 Trace Studies of Uniqueness, Immutability

the aforementioned results: 73.4% (median) of all objects are stationary, and 72.6% (median) of all classes
only produce stationary objects. This suggests that the stationary fields measured by Nelson et. al tend to
cluster, rather than being scattered across all classes.

Chis et al. analyse heap snapshots, focusing on memory bloat in Java programs and identifies common
problems that are specific to Java programs [9]. Mitchell et al. [16], summarises heap snapshots in ways
that programmers may comprehend with a different goal than ours – to identify memory bloat.

Potanin et al. [20] analyse heap snapshots of Java programs and report among other things on unique-
ness (on the heap) and ownership. Their analysis of uniqueness only considers pointers on the heap and
finds that 87% of fields are unaliased. Our findings are similar but importantly reached through a different
methodology.

8 Conclusion and Future Work

We have presented a trace-based analysis of 9 programs from the DaCapo benchmark suite studying
uniqueness, stack-boundedness, and immutability. The ultimate goal of this work is capturing the de-facto
properties of real-world programs, with a minimal effort on the behalf of the programmer. Properties
such as uniqueness, immutability and their cousin, encapsulation, unlock compile-time and run-time
optimisations and can avoid catering to pathological cases that rarely show up in practise, but cannot
generally be ruled out.

The results we obtain suggest that a significant amount of static invariants relating to aliasing and
immutability exists in unaltered Java programs.

In future work, we want to move the Spencer service forward – by adding more data, implementing
more analyses, and doing more analyses like this one. We have preliminary evidence that tracking move
semantics might be very interesting – by that, we mean tracking objects that may well be aliased, but
where only the newest alias is used. A common way to implement unique references in practice (C++,
Rust use similar constructs) is to consume them after reading them by setting the read variable or field
to null, but in unmodified Java programs, explicitly nullifying fields is of course rare. Another research
direction is to add static analysis to Spencer. We currently already store all classes that are loaded (even
classes that were dynamically generated) in the data base. Mixing static and dynamic analysis techniques
would potentially give ranges upper and lower bounds on reported results.

References

[1] Paulo Sérgio Almeida (1997): Balloon Types: Controlling Sharing of State in Data Types, pp. 32–59.
Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/BFb0053373.

[2] Paulo Sérgio Almeida (1997): Balloon Types: Controlling Sharing of State in Data Types. In Mehmet
Akşit & Satoshi Matsuoka, editors: ECOOP’97 — Object-Oriented Programming, Lecture Notes in
Computer Science 1241, Springer Berlin Heidelberg, pp. 32–59.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Fein-
berg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage & B. Wiedermann (2006): The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In: OOPSLA ’06: Proceedings of the 21st annual
ACM SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and Applications,
ACM Press, New York, NY, USA, pp. 169–190, doi:http://doi.acm.org/10.1145/1167473.1167488.

http://dx.doi.org/10.1007/BFb0053373
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167488

S. Brandauer & T. Wrigstad 13

[4] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Strniša, Jan Vitek
& Tobias Wrigstad (2009): Thorn: robust, concurrent, extensible scripting on the JVM. In: ACM
SIGPLAN Notices, 44, ACM, pp. 117–136.

[5] Chandrasekhar Boyapati & Martin Rinard (2001): A parameterized type system for race-free Java
programs. In: ACM SIGPLAN Notices, 36, ACM, pp. 56–69.

[6] John Boyland (2001): Alias burying: Unique variables without destructive reads. Softw., Pract.
Exper. 31(6), pp. 533–553.

[7] John Boyland, James Noble & William Retert (2001): Capabilities for sharing. In: ECOOP
2001—Object-Oriented Programming, Springer, pp. 2–27.

[8] Stephan Brandauer & Tobias Wrigstad (2017): Spencer: Interactive Heap Analysis for the Masses.
under submission.

[9] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick O’Sullivan, Trevor Parsons
& John Murphy (2011): Patterns of Memory Inefficiency. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6813 LNCS, pp. 383–407, doi:10.1007/978-3-642-22655-7 18.

[10] Dave Clarke & Tobias Wrigstad (2003): External Uniqueness Is Unique Enough. In Luca Cardelli,
editor: ECOOP 2003 – Object-Oriented Programming, Lecture Notes in Computer Science 2743,
Springer Berlin Heidelberg, pp. 176–200.

[11] Dave Clarke, Tobias Wrigstad, Johan Östlund & Einar Johnsen (2008): Minimal ownership for active
objects. Programming Languages and Systems, pp. 139–154.

[12] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing & Andy McNeil (2015): Deny Capab-
ilities for Safe, Fast Actors. In: AGERE15. Available at http://www.doc.ic.ac.uk/~scd/
fast-cheap-AGERE.pdf.

[13] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield & Joe Duffy (2012): Unique-
ness and Reference Immutability for Safe Parallelism. SIGPLAN Not. 47(10), pp. 21–40.

[14] Brian Hackett & Alex Aiken (2006): How is Aliasing Used in Systems Software? In: Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software engineering,
SIGSOFT ’06/FSE-14, ACM, New York, NY, USA, pp. 69–80, doi:10.1145/1181775.1181785.

[15] Philipp Haller & Martin Odersky (2010): Capabilities for Uniqueness and Borrowing. 24th European
Conference on Object-Oriented Programming (ECOOP 2010) (June), pp. 354–378, doi:10.1007/978-
3-642-14107-2 17.

[16] Nick Mitchell (2006): The Runtime Structure of Object Ownership. ECOOP 2006–Object-Oriented
Programming, pp. 74–98, doi:10.1007/11785477 5.

[17] Nick Mitchell, Edith Schonberg & Gary Sevitsky (2009): Making Sense of Large Heaps. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 5653 LNCS, pp. 77–97, doi:10.1007/978-3-642-03013-0 5.

[18] S Nelson, D J Pearce & J Noble (2013): Profiling Field Initialisation in Java. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 7687 LNCS, pp. 292–307.

[19] Johan Östlund (2016): Language Constructs for Safe Parallel Programming on Multi-cores. Ph.D.
thesis, Department of Information Technology, Uppsala University.

http://dx.doi.org/10.1007/978-3-642-22655-7{_}18
http://www.doc.ic.ac.uk/~scd/fast-cheap-AGERE.pdf
http://www.doc.ic.ac.uk/~scd/fast-cheap-AGERE.pdf
http://dx.doi.org/10.1145/1181775.1181785
http://dx.doi.org/10.1007/978-3-642-14107-2{_}17
http://dx.doi.org/10.1007/978-3-642-14107-2{_}17
http://dx.doi.org/10.1007/11785477{_}5
http://dx.doi.org/10.1007/978-3-642-03013-0{_}5

14 Trace Studies of Uniqueness, Immutability

[20] Alex Potanin, James Noble & Robert Biddle (2004): Checking Ownership and Confinement. Con-
currency Computation Practice and Experience 16(7), pp. 671–687, doi:10.1002/cpe.799.

[21] Alexander J Summers & Peter Mueller (2011): Freedom before commitment: a lightweight type
system for object initialisation. In: ACM SIGPLAN Notices, 46, ACM, pp. 1013–1032.

[22] Christopher Unkel & Monica S. Lam (2008): Automatic Inference of Stationary Fields: A Gener-
alization of Java’s Final Fields. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, ACM, New York, NY, USA, pp.
183–195, doi:10.1145/1328438.1328463.

http://dx.doi.org/10.1002/cpe.799
http://dx.doi.org/10.1145/1328438.1328463

To appear in EPTCS.
c© Valentina Castiglioni & Simone Tini

This work is licensed under the
Creative Commons Attribution License.

Logical Characterization of Trace Metrics

Valentina Castiglioni
University of Insubria (IT)

v.castiglioni2@uninsubria.it

Simone Tini
University of Insubria (IT)

simone.tini@uninsubria.it

In this paper we continue our research line on logical characterizations of behavioral metrics obtained
from the definition of a metric over the set of logical properties of interest. This time we provide a
characterization of both strong and weak trace metric on nondeterministic probabilistic processes,
based on a minimal boolean logic L which we prove to be powerful enough to characterize strong
and weak probabilistic trace equivalence. Moreover, we also prove that our characterization approach
can be restated in terms of a more classic probabilistic L-model checking problem.

1 Introduction

Behavioral equivalences and modal logics have been successfully employed for the specification and ver-
ification of communicating concurrent systems, henceforth processes. The former ones provide a simple
and elegant tool for comparing the observable behavior of processes. The latter ones allow for an imme-
diate expression of the desired properties of processes. Since the work of [19] on the Hennessy-Milner
logic (HML), these two approaches are connected by means of logical characterizations of behavioral
equivalences: two processes are behaviorally equivalent if and only if they satisfy the same formulae in
the logic. Hence, the characterization of an equivalence subsumes both the fact that the logic is as ex-
pressive as the equivalence and the fact that the equivalence preserves the logical properties of processes.

It is common agreement that when also quantitative properties of processes are taken into account
a metric semantics is favored over behavioral equivalences, [1, 3, 7, 10, 12, 15–17, 23, 24]. since the
latter ones are too sensible to small variations in the probabilistic properties of processes. Therefore, the
interest in logical characterizations of the so called behavioral metrics, namely the quantitative analogues
of equivalences that quantify how far the behavior of two processes is apart, is constantly growing.

In this paper we propose a logical characterization of the strong and weak variants of the trace
metric [28] for nondeterministic probabilistic processes (PTSs [27]). To this aim we follow the approach
of [8] in which a logical characterization of the bisimilarity metric is provided. We introduce two boolean
logics L and Lw, providing a probabilistic choice operator capturing the probability weights that a process
assigns to arbitrary traces, which we prove to characterize resp. the strong and weak probabilistic trace
equivalences of [26]. Such a characterization is obtained by introducing the novel notion of mimicking
formulae of resolutions, i.e. formulae capturing, for each possible resolution of nondeterminism for a
process, all the executable traces as well as the probability weights assigned to them. Then we introduce
the notions of distance between formulae in L and Lw which are 1-bounded (pseudo)metrics assigning to
each pair of formulae a suitable quantitative analogue of their syntactic disparities. These lift to metrics
over processes, called resp. L-distance and Lw-distance, corresponding to the Hausdorff lifting of the
distance between formulae to the sets of formulae satisfied by the two processes. We prove that our
L-distance and Lw-distance correspond resp. to the strong and weak trace metric.

An important feature of our characterization method is that, although it is firmly based on the mimick-
ing formulae of resolutions, it does not actually depend on how these resolutions of nondeterminism are

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Logical Characterization of Trace Metrics

obtained from processes. For instance, in this paper we consider resolutions obtained via a deterministic
scheduler [4,26], but our approach would not be different when applied to randomized resolutions [4,26].

Our approach differs from the ones proposed in the literature in that in general logics equipped with
a real-valued semantics are used for the characterization, which is then expressed as

d(s, t) = sup
ϕ∈L
|[ϕ](s)− [ϕ](t)| (1)

where d is the behavioral metric of interest, L is the considered logic and [ϕ](s) denotes the value of
the formula ϕ at process s accordingly to the real-valued semantics [1, 2, 12–14]. In [3] it is proved that
the trace metric on Markov Chains (MCs) can be characterized in terms of the probabilistic LTL-model
checking problem. Roughly speaking, a characterization as in (1) is obtained from the boolean logic LTL
by assigning a real-valued semantics to it, defined by exploiting the probabilistic properties of the MC:
the value of a formula ϕ ∈ LTL at state s is given by the probability of s to execute a run satisfying ϕ .
In this paper we show that we can obtain a similar result by means of our distance between formulae.
More precisely, we provide an alternative characterization of the trace metric on PTSs dT in terms of the
probabilistic L-model checking problem. In detail, we define a real-valued semantics for L by assigning
to each formula Ψ ∈ L at process s the value [Ψ](s) corresponding to the minimal distance between Ψ

and any formula satisfied by s. Thus we could use this real-valued semantics to verify whether process s
behaves within an allowed tolerance wrt. to the specification given by the formula Ψ. Then, by exploiting
some properties of the Hausdorff metric, we will be able to conclude that dT (s, t) = sup

Ψ∈L
| [Ψ](s)− [Ψ](t) |

thus giving that the verification of any L-formula in s cannot differ from its verification in t for more than
dT (s, t) which, in turn, constitutes the maximal observable error in the approximation of s with t.

We can summarize our contributions as follows:

1. Logical characterization of both strong and weak trace metric: we define a distance on the class
of formulae L (resp. Lw) and we prove that the strong (resp. weak) trace metric between two
processes equals the syntactic distance between the sets of formulae satisfied by them.

2. Logical characterization of strong trace metric in terms of a probabilistic L-model checking prob-
lem: by means of the distance between formulae we equip L with a real-valued semantics and we
use it to establish a characterization of the trace metric as in (1).

3. Logical characterization of both strong and weak probabilistic trace equivalence: by exploiting the
notion of mimicking formula, we prove that two processes are strong (resp. weak) trace equivalent
if and only if they satisfy the same (resp. syntactically equivalent) formulae in L (resp. Lw).

2 Background

2.1 Nondeterministic probabilistic transition systems

Nondeterministic probabilistic transition systems [27] combine LTSs [22] and discrete time Markov
chains [18, 29], allowing us to model reactive behavior, nondeterminism and probability.

As state space we take a set S, whose elements are called processes. We let s, t, . . . range over S.
Probability distributions over S are mappings π : S→ [0,1] with ∑s∈S π(s) = 1 that assign to each s ∈ S
its probability π(s). By ∆(S) we denote the set of all distributions over S. We let π,π ′, . . . range over
∆(S). For π ∈ ∆(S), we denote by supp(π) the support of π , namely supp(π) = {s ∈ S | π(s)> 0}. We
consider only distributions with finite support. For s ∈ S we denote by δs the Dirac distribution defined

Valentina Castiglioni & Simone Tini 3

by δs(s) = 1 and δs(t) = 0 for s 6= t. The convex combination ∑i∈I piπi of a family {πi}i∈I of distributions
πi ∈ ∆(S) with pi ∈ (0,1] and ∑i∈I pi = 1 is defined by (∑i∈I piπi)(s) = ∑i∈I(piπi(s)) for all s ∈ S.

Definition 1 (PTS, [27]). A nondeterministic probabilistic labeled transition system (PTS) is a triple
(S,A ,−→), where: (i) S is a countable set of processes, (ii) A is a countable set of actions, and (iii) −→⊆
S×A ×∆(S) is a transition relation.

We call (s,a,π) ∈−→ a transition, and we write s a−→ π for (s,a,π) ∈−→. We write s a−→ if there is
a distribution π ∈ ∆(S) with s a−→ π , and s a−→6 otherwise. Let init(s) = {a ∈ A | s a−→} denote the set
of the actions that can be performed by s. Let der(s,a) = {π ∈ ∆(S) | s a−→ π} denote the set of the
distributions reachable from s through action a. Let dpt(s) denote the depth of s, namely the maximal
number of sequenced transitions that can be performed from s, defined by dpt(s) = 0, if init(s) = /0, and
dpt(s) = 1+ supa∈init(s),π∈der(s,a),t∈supp(π) dpt(t), otherwise. We say that a process s ∈ S is image-finite
if for all actions a ∈ init(s) the set der(s,a) is finite [20], and that s has finite depth if dpt(s) is finite.
Finally, we denote as finite the image-finite processes with finite depth. In this paper we consider only
processes that are finite.

Throughout the paper we will introduce some equivalence relations on traces and on modal formulae.
To deal with the equivalence of probability distributions over these elements, we need to introduce the
notion of lifting of a relation.

Definition 2. Let X be any set. Consider a relation R ⊆ X ×X . Then the lifting of R is the relation
R† ⊆ ∆(X)×∆(X) with π R† π ′ if whenever π = ∑i∈I piδxi then π ′ = ∑i∈I, ji∈Ji p jiδy ji

with ∑ ji∈Ji p ji = pi

and xi R y ji for all ji ∈ Ji.

Moreover, we can lift relations to relations over sets. Given a relation R ⊆ X ×Y , we say that two
subsets X ′ ⊆ X ,Y ′ ⊆ Y are in relation R , notation X ′RY ′, iff (i) for each x ∈ X ′ there is an y ∈ Y ′ with
xR y, and (ii) for each y ∈ Y ′ there is an x ∈ X ′ with xR y.

2.2 Strong probabilistic trace equivalence

A probabilistic trace equivalence is a relation over S that equates processes s, t ∈ S if for all resolutions
of nondeterminism they can mimic each other’s sequences of transitions with the same probability.

Definition 3 (Computation, [4]). Let P = (S,A ,−→) be a PTS and s,s′ ∈ S. We say that c := s0
a1
�

s1
a2
� s2 . . .sn−1

an
� sn is a computation of P of length n from s = s0 to s′ = sn iff for all i = 1, . . . ,n there

exists a transition si−1
ai−→ πi in P such that si ∈ supp(πi), with πi(si) being the execution probability of

step si−1
ai
� si conditioned on the selection of transition si−1

ai−→ πi of P at si−1. We denote by Pr(c) =
∏

n
i=1 πi(si) the product of the execution probabilities of the steps in c.

Let s,s′,s′′ ∈ S. Given any computation c′ = s′
a1
� s1

a2
� . . .

an
� s′′ from s′ to s′′, we write c = s

a
� c′ if

c = s
a
� s′

a1
� . . .

an
� s′′ is a computation from s to s′′.

Given a process s ∈ S, we say that c is a computation from s if there is a process s′ such that c is a
computation from s to s′. We denote by C (s) the set of computations from s. We say that a computation
c from process s is maximal if it is not a proper prefix of any other computation from s. We denote
by Cmax(s) ⊆ C (s) the subset of the maximal computations from s. Since we are considering finite
processes, all computations are guaranteed to be of finite length.

We denote by A ? the set of sequences of actions in A and we call trace any element α ∈ A ?.
We use the special symbol ε 6∈ A to denote the empty trace. We say that a computation is compatible
with the trace α ∈ A ? iff the sequence of actions labeling the computation steps is equal to α . We

4 Logical Characterization of Trace Metrics

s
a a a

0.5 0.5 0.5 0.5 1

s1 s2 s3 s4 s5
b c d b d c b

zs
a

0.5 0.5

zs1 zs2

d

Zs ∈ Res(s)

z′s
a

0.5 0.5

z′s1
z′s2

b d

Z ′
s ∈ Res(s)

z′′s
a

0.5 0.5

z′′s3
z′′s4

d c

Z ′′
s ∈ Res(s)

Figure 1: An example of three distinct resolutions for process s. Black circles stand for the probability
distribution δnil, with nil process that cannot execute any action.

denote by C (s,α)⊆ C (s) the set of computations of process s which are compatible with trace α and by
Cmax(s,α)⊆ C (s,α) we denote the set of maximal computations of s that are compatible with α . Then,
given any C ⊆ C (s), we define Pr(C) = ∑c∈C Pr(c).

Definition 4. Let s ∈ S and consider any c ∈ C (s). We denote by Tr(c) ∈ A ? the trace to which c is
compatible. We extend this notion to sets by letting Tr(C ′) = {Tr(c) | c ∈ C ′} for any C ′ ⊆ C (s). We
say that Tr(C (s)) is the set of traces of s and Tr(Cmax(s)) is the set of maximal traces of s.

To establish trace equivalence we need first to deal with nondeterministic choices of processes. To
this aim, we consider all possible resolutions of nondeterminism one by one. Using the notation of [4],
our resolutions correspond to the resolutions obtained via a deterministic scheduler (see Fig. 1 for an
example).

Definition 5 (Resolution, [4]). Let P = (S,A ,−→) be a PTS and s ∈ S. We say that a PTS Z =
(Z,A ,−→Z) is a resolution for s iff there exists a state correspondence function corrZ : Z → S such
that s = corrZ (zs) for some zs ∈ Z, called the initial state of Z , and moreover it holds that:

• zs 6∈ supp(π) for any π ∈
⋃

z∈Z,a∈A der(z,a).

• Each z ∈ Z \{zs} is such that z ∈ supp(π) for some π ∈
⋃

z′∈Z\{z},a∈A der(z′,a).

• Whenever z a−→Z π , then corrZ (z) a−→ π ′ with π(z′) = π ′(corrZ (z′)) for all z′ ∈ Z.

• Whenever z a1−→Z π1 and z a2−→Z π2 then a1 = a2 and π1 = π2.

We let Res(s) be the set of resolutions for s and Res(S) =
⋃

s∈S Res(s) be the set of all resolutions on S.

Strong probabilistic trace equivalence equates two processes if their resolutions can be matched so
that they assign the same probability to all traces.

Definition 6 (Strong probabilistic trace equivalence, [4, 26]). Let P = (S,A ,−→) be a PTS. We say that
s, t ∈ S are strong probabilistic trace equivalent, notation s≈st t, iff it holds that:

• For each resolution Zs ∈ Res(s) of s there is a resolution Zt ∈ Res(t) of t such that for all traces
α ∈A ? we have Pr(C (zs,α)) = Pr(C (zt ,α)).

• For each resolution Zt ∈ Res(t) of t there is a resolution Zs ∈ Res(s) of s such that for all traces
α ∈A ? we have Pr(C (zt ,α)) = Pr(C (zs,α)).

Valentina Castiglioni & Simone Tini 5

t
a

0.5 0.5

t1 t2
b c b d

zt
a

0.5 0.5

zt1 zt2
d

Zt ∈ Res(t)

z′t
a

0.5 0.5

z′t1 z′t2
b d

Z ′
t ∈ Res(t)

z′′t
a

0.5 0.5

z′′t1 z′′t2
c d

Z ′′
t ∈ Res(t)

z′′′t
a

0.5 0.5

z′′′t1 z′′′t2
b b

Z ′′′
t ∈ Res(t)

Figure 2: Process t is strong trace equivalent to process s in Fig. 1

Example 1. Consider process s in Fig. 1 and process t in Fig. 2. We have that s ≈st t. Briefly, it is
immediate to check that the three resolutions Zs,Z ′

s ,Z
′′

s ∈ Res(s) in Fig. 1 are matched resp. by the
three resolutions Zt ,Z ′

t ,Z
′′

t ∈ Res(t) in Fig. 2. Moreover, for all other resolutions, we notice that
accordingly to the chosen resolutions for processes t1 and t2, process s can always match their traces and
related probabilities by selecting the proper a-branch. In particular, resolution Z ′′′

t ∈ Res(t) in Fig. 2 is
matched by the resolution for s corresponding to the rightmost a-branch.

2.3 Weak probabilistic trace equivalence

We extend the set of actions A to the set Aτ containing also the silent action τ . We let a range over Aτ .
Usually, traces are not distinguished by any occurrence of τ in them [28]. Hence, we introduce the

notion of equivalence of traces.

Definition 7 (Equivalence of traces). The relation of equivalence of traces≡w⊆A ?
τ ×A ?

τ is the smallest
equivalence relation satisfying 1. ε ≡w ε and 2. given α = a1α ′, β = a2β ′ we have α ≡w β iff

• either a1 = τ and α ′ ≡w β ,

• or a2 = τ and α ≡w β ′

• or a1 = a2 and α ′ ≡w β ′.

For each trace α ∈ A ?
τ , we denote by [α]w the equivalence class of α with respect to ≡w, namely

[α]w = {β ∈A ?
τ | β ≡w α}. Moreover, for each computation c, we let Trw(c) = [Tr(c)]w.

Given any process s ∈ S and any trace α ∈A ?
τ , we say that a computation c ∈ C (s) is in C w(s,α) iff

Tr(c) ≡w α and c is not a proper prefix of any other computation in C w(s,α). This is to avoid to count
multiple times the same execution probabilities in the evaluation of Pr(C w(s,α)).

Definition 8 (Weak probabilistic trace equivalence). Let P = (S,A ,−→) be a PTS. We say that s, t ∈ S
are weak probabilistic trace equivalent, notation s≈wt t, iff it holds that:

• For each resolution Zs ∈ Res(s) of s there is a resolution Zt ∈ Res(t) of t such that for all traces
α ∈A ? we have Pr(C w(zs,α)) = Pr(C w(zt ,α)).

• For each resolution Zt ∈ Res(t) of t there is a resolution Zs ∈ Res(s) of s such that for all traces
α ∈A ? we have Pr(C w(zt ,α)) = Pr(C w(zs,α)).

6 Logical Characterization of Trace Metrics

3 Trace metrics

In this section we introduce the quantitative analogues of strong and weak probabilistic trace equivalence,
namely the strong and weak trace metric, resp., which are 1-bounded pseudometrics that quantify how
much the behavior of two processes is apart wrt. the strong (resp. weak) probabilistic trace semantics. Our
metrics are a revised version of the trace metric proposed in [28]. Briefly, in [28] there is a distinction
between the notions of path and trace: any α ∈ A ?

τ is called path and the trace related to a path is
obtained by deleting any occurrence of τ from it. The metric in [28] is then defined only on traces and
it has inspired our strong trace metric. In the present paper we distinguish between the strong and the
weak case and we regain the results in [28] by our equivalence of traces: the weak trace metric coincides
with the strong one on the quotient space wrt. ≡w.

3.1 The Kantorovich and Hausdorff lifting functionals

In the literature we can find several examples of behavioral metrics on systems with probability and
nondeterminism (see among others [1,5,6,10,12,28]). In this paper we follow the approach of [6,10,28]
in which two kind of metrics are combined to obtain a metric on the system. The Kantorovich metric [21]
quantifies the disparity between the probabilistic properties of processes and it is defined by means of
the notion of matching. For any set X , a matching for distributions π,π ′ ∈ ∆(X) is a distribution over the
product space w ∈ ∆(X ×X) with π and π ′ as left and right marginal resp., namely ∑y∈X w(x,y) = π(x)
and ∑x∈X w(x,y) = π ′(y) for all x,y ∈ X . Let W(π,π ′) denote the set of all matchings for π,π ′.

Definition 9 (Kantorovich metric, [21]). Let d : X×X → [0,1] be a 1-bounded metric. The Kantorovich
lifting of d is the 1-bounded metric K(d) : ∆(X)×∆(X)→ [0,1] defined for all π,π ′ ∈ ∆(X) by

K(d)(π,π ′) = min
w∈W(π,π ′)

∑
x,y∈X

w(x,y) ·d(x,y).

We remark that since we are considering only probability distributions with finite support, the mini-
mum over W(π,π ′) is well defined for all π,π ′ ∈ ∆(X).

The Hausdorff metric allows us to lift any distance over probability distributions to a distance over
sets of probability distributions.

Definition 10 (Hausdorff metric). Let d̂ : ∆(X)×∆(X)→ [0,1] be a 1-bounded metric. The Hausdorff
lifting of d̂ is the 1-bounded metric H(d̂) : P(∆(X))×P(∆(X))→ [0,1] defined by

H(d̂)(Π1,Π2) = max
{

sup
π1∈Π1

inf
π2∈Π2

d̂(π1,π2), sup
π2∈Π2

inf
π1∈Π1

d̂(π2,π1)
}

for all Π1,Π2 ⊆ ∆(X), where inf /0 = 1, sup /0 = 0.

Hence, given two processes s, t ∈ S, the idea is to quantify the distance between each pair of their
resolutions by exploiting the Kantorovich metric, which quantifies the disparities in the probabilities of
the two processes to execute the same traces. Then, we lift this distance on resolutions to a distance
between s and t by means of the Hausdorff metric. Intuitively, as each resolution captures a different set
of nondeterministic choices of a process, we use the Hausdorff metric to compare the possible choices
of the two processes and to match them in order to obtain the minimal distance.

Valentina Castiglioni & Simone Tini 7

3.2 Strong trace metric

To define the strong trace metric we start from a distance between traces, defined as the discrete metric
over traces: two traces are at distance 1 if they are distinct, otherwise the distance is set to 0. Differently
from [28] we do not consider any discount on the distance between traces. Trace equivalences, and thus
metrics, are usually employed when the observations on the system cannot be done in a step-by-step
fashion, but only the total behavior of the system can be observed. Hence, a step-wise discount does not
fit in this setting. However, the discount would not introduce any technical issue.
Definition 11 (Distance between traces). The distance between traces dT : A ?×A ?→ [0,1] is defined
for any pair of traces α,β ∈A ? by

dT (α,β) =

{
0 if α = β

1 otherwise.

Following [28] we aim to lift the distance dT to a distance between resolutions by means of the
Kantorovich lifting functionalwhich, we recall, is defined on probability distributions. As shown in the
following example, we are not guaranteed that the function Pr(C (,)) defines a probability distribution
on the set of traces of a resolution.
Example 2. Consider process t and the resolution Zr ∈ Res(t) for it, represented in Fig. 2. We can
distinguish three computations for zt :

c1 = zt
a
� zt1

c2 = zt
a
� zt2

c3 = zt
a
� zt2

d
� nil.

Clearly, Tr(C (zt)) = {a,ad}. Then we have

Pr(C (zt ,a)) = ∑c∈C (zt ,a) Pr(c) = Pr(c1)+Pr(c2) = 1
Pr(C (zt ,ad)) = ∑c∈C (zt ,ad) Pr(c) = Pr(c3) = 0.5

from which we gather

∑
α∈Tr(C (zt))

Pr(C (zt ,α)) = Pr(C (zt ,a))+Pr(C (zt ,ad)) = 1+0.5 > 1.

However, as shown in the following lemma, if we consider only maximal computations we obtain a
probability distribution over traces.
Lemma 1. Consider any resolution Z ∈ Res(S) with initial state z. We have that ∑c∈Cmax(z) Pr(c) = 1.

Proof. We proceed by induction over the depth of z.
The base case dpt(z) = 0 is immediate since we have that C (z) = {ε} and Pr(ε) = 1.
Consider now the inductive step dpt(z) > 0. Assume, wlog., that z a−→Z π . Therefore, each trace

c ∈ Cmax(z) will be of the form c = z
a
� c′ for some c′ ∈ Cmax(z′) for any z′ ∈ supp(π) and moreover for

such a trace c it holds that Pr(c) = π(z′)Pr(c′). Thus we have

∑c∈Cmax(z) Pr(c) = ∑ z′∈supp(π)
c′∈Cmax(z′)

π(z′)Pr(c′)

= ∑z′∈supp(π) π(z′)
(

∑c′∈Cmax(z′) Pr(c′)
)

= ∑z′∈supp(π) π(z′) ·1 (by induction over dpt(z′)< dpt(z))
= 1.

8 Logical Characterization of Trace Metrics

Definition 12 (Trace distribution). Consider any resolution Z ∈ Res(S), with initial state z. We define
the trace distribution of Z as the function TZ : A ?→ [0,1] defined for each α ∈A ? by

TZ (α) = Pr(Cmax(z,α)).

Notice that only maximal computations are in the support of TZ . This guarantees that TZ is a
distribution.

Lemma 2. Consider any resolution Z ∈ Res(S), with initial state z. Then the trace distribution TZ of
Z is a probability distribution over A ?.

Proof. By definition and by Lemma 1 we have that for each α ∈A ?

0≤ Pr(Cmax(z,α)) = ∑
c∈Cmax(z,α)

Pr(c)≤ ∑
c∈Cmax(z)

Pr(c) = 1

Hence, we are guaranteed that TZ (α) ∈ [0,1] for each α ∈ A ?. Thus, to prove the thesis we simply
need to show that ∑α∈A ? TZ (α) = 1. We have that

∑α∈A ? TZ (α) = ∑α∈A ? Pr(Cmax(z,α))
= ∑α∈Tr(Cmax(z)) Pr(Cmax(z,α))

= ∑α∈Tr(Cmax(z)),c∈Cmax(z,α) Pr(c)
= ∑c∈

⋃
α∈Tr(Cmax(z))Cmax(z,α) Pr(c)

= ∑c∈Cmax(z) Pr(c)
= 1

where

• the second equality follows from the fact that by definition Pr(Cmax(z,α)) = 0 for each α 6∈
Tr(Cmax(z));

• the fourth equality follows from the fact that each maximal computation of z belongs to a set
Cmax(z,α) for at most one trace α , namely

⋃
α∈Tr(Cmax(z))Cmax(z,α) is a disjoint union (and there-

fore no probability weight is counted more than once);

• the fifth equality follows by the fact that the disjoint union
⋃

α∈Tr(Cmax(z))Cmax(z,α) is a partition
of Cmax(z);

• the sixth equality follows by Lemma 1.

We remark that function T plays the role of the trace distribution introduced in [26]. Formally,
in [26] the trace distribution for a resolution is defined as the probability space built over its set of
traces. Here, we simply identify it with the probability distribution defined on the probability space.
In this setting, two resolutions are said to be trace distribution equivalent if they have the same trace
distribution and thus two processes are trace equivalent if their resolutions are pairwise equivalent.

Lemma 3. Consider any resolution Z ∈ Res(S) with initial state z. Consider any trace α ∈A ?. Then
Pr(C (z,α)) = ∑c∈Pmax(z,α) Pr(c), where Pmax(z,α) is the set of maximal computations from z having a
prefix which is compatible with α .

Valentina Castiglioni & Simone Tini 9

Proof. For simplicity let us distinguish two cases.

1. Pr(C (z,α)) = 0. This implies that there is no computation from z which is compatible with α .
Clearly, this gives that there can not be any maximal computation from z having a prefix compatible
with α , namely Pmax(z,α) = /0. Thus we have ∑c∈Pmax(z,α) Pr(c) = 0 from which the thesis follows.

2. Pr(C (z,α))> 0. In this case, we proceed by induction over |α|.
• Base case |α| = 0, namely α = ε . The only computation compatible with α is the empty

computation for which it holds that Pr(C (z,α)) = 1. Since the empty computation is a prefix
for all computations from z we have that Pmax(z,α) = Cmax(z). By Lemma 1 we have that
∑c∈Cmax(z) Pr(c) = 1 and thus the thesis follows.

• Inductive step |α|> 0. Assume wlog that the only transition inferable for z in Z is z a−→Z π .
Hence α = aα ′ for some α ′ ∈A ?, with |α ′|< |α|. Then we have

Pr(C (z,α)) = ∑z′∈supp(π) π(z′)Pr(C (z′,α ′))

= ∑z′∈supp(π)

(
π(z′) ·∑c′∈Pmax(z′,α ′) Pr(c′)

)
(by induction over |α ′|)

= ∑z′∈supp(π),c′∈Pmax(z′,α ′) π(z′)Pr(c′)
= ∑c∈Pmax(z,aα ′) Pr(c)

where the last equality follows by considering that

Pmax(z,aα
′) =

{
c | c = z a−→Z c′ and c′ ∈

⋃
z′∈supp(π)

Pmax(z′,α ′)
}
.

Proposition 1. For any pair of resolutions Z1,Z2 ∈ Res(S), with initial states z1,z2 resp., we have that
TZ1 = TZ2 iff Pr(C (z1,α)) = Pr(C (z2,α)) for all traces α ∈A ?.

Proof. The thesis follows by applying the same arguments used it the proof of Theorem 2 below.

Hence, we can now follow [28] to define the trace metric.

Definition 13 (Trace distance between resolutions). The trace distance between resolutions DT : Res(S)×
Res(S)→ [0,1] is defined for any Z1,Z2 ∈ Res(S) by

DT (Z1,Z2) = K(dT)(TZ1 ,TZ2).

Proposition 2 ([28, Proposition 2]). The kernel of DT is strong trace distribution equivalence of resolu-
tions.

To deal with nondeterministic choices, we lift the distance over deterministic resolutions to a pseu-
dometric over processes by means of the Hausdorff lifting functional.

Definition 14 (Strong trace metric). Strong trace metric dT : S×S→ [0,1] is defined for all s, t ∈ S as

dT (s, t) = H(DT)(Res(s),Res(t)).

Proposition 3 ([28, Proposition 3]). The kernel of dT is probabilistic strong trace equivalence.

10 Logical Characterization of Trace Metrics

s
a a

0.5 0.5 1

s1 s2 s3

b c d b

t
a

0.5 0.5

t1 t2
b c b d

zs
a

0.5 0.5

zs1 zs2

c

Zs ∈ Res(s)

zt
a

0.5 0.5

zt1 zt2
c b

Zt ∈ Res(t)

Figure 3: Processes s, t are such that s 6≈st t and dT (s, t) = 0.5.

Example 3. Consider processes s, t in Fig. 3. We have that s 6≈st t. Notice that none of the resolutions
for s can exhibit both traces ab and ac. Thus, whenever we chose resolution Zt ∈ Res(t) in Fig. 3 for t,
then there is no resolution for s that can match Zt on all traces.

Let us evaluate the trace distance between s and t. Since resolution Zt for t distinguishes the two
processes, we start by evaluating its distance from the resolutions for s. Consider the resolution Zs ∈
Res(s) in Fig. 3. By Def. 12, we have

TZs = 0.5δac +0.5δa TZt = 0.5δac +0.5δab.

Clearly, dT (ac,ac) = 0 and dT (ac,a) = dT (ac,ab) = dT (a,ab) = 1. Thus, by Def 13 we have

DT (Zs,Zt) = K(dT)(TZs ,TZt)
= minw∈W(TZs ,TZt)

∑α∈supp(TZs),β∈supp(TZt)
w(α,β) ·dT (α,β)

= 0.5 ·dT (ac,ac)+0.5 ·dT (a,ab)
= 0.5

where to minimize the distance we have matched the two occurrences of the trace ac. By similar calcu-
lations, one can easily obtain that

0.5 = DT (Zt ,Zs) = sup
Z2∈Res(t)

inf
Z1∈Res(s)

DT (Z2,Z1).

Moreover, it is immediate to check that whichever resolution for s we choose, there is always a resolution
for t which is at trace distance 0 from it, namely

0 = sup
Z1∈Res(s)

inf
Z2∈Res(t)

DT (Z1,Z2).

Therefore, we can conclude that

dT (s, t) = H(DT)(Res(s),Res(t)) = max{0, 0.5}= 0.5

3.3 Weak trace metric

To obtain the quantitative analogue of the weak trace equivalence, it is enough to adapt the notion of
distance between traces (Definition 11) to the weak context. The idea is that since silent steps cannot
be observed, then they should not count on the trace distance. Thus we introduce the notion of weak
distance between traces which is a 1-bounded pseudometric over A ?

τ having ≡w as kernel.

Valentina Castiglioni & Simone Tini 11

Definition 15 (Weak distance between traces). The weak distance between traces dw
T : A ?

τ ×A ?
τ → [0,1]

is defined for any pair of traces α,β ∈A ?
τ by

dw
T (α,β) =

{
0 if α ≡w β

1 otherwise.

It is clear that dw
T is a 1-bounded pseudometric whose kernel is the equivalence of traces.

By substituting dT with dw
T in Definition 13 we obtain the notion of weak trace distance between

resolutions, denoted by the 1-bounded pseudometric Dw
T . By lifting the relation of equivalence of traces

≡w to an equivalence on probability distributions over traces ≡†
w, we obtain that the kernel of Dw

T is
given by the lifted equivalence on trace distributions, namely by the weak trace distribution equivalence
of resolutions. We can prove that our characterization of weak trace equivalence is equivalent to the one
proposed in [26] in terms of trace distributions.

To simplify the reasoning in the upcoming proofs, let us define the weak version of the trace distri-
bution given in Definition 12. The idea is that we want to define a probability distribution on the traces
executable by a resolution up-to trace equivalence.

Definition 16. Let s ∈ S and consider any resolution Z ∈ Res(S), with z = corr−1
Z (s). We define the

weak trace distribution for Z as the function T w
Z : A ?

τ → [0,1] defined by T w
Z (α) = Pr(C w

max(z,α)).

Lemma 4. For each Z ∈ Res(S), the weak trace distribution T w
Z is a probability distribution over A ?.

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 2 above.

Remark 1. Notice that T w is not a probability distribution over A ?
τ . In fact it is enough to consider

the simple resolution Z having z as initial state for which the only transition in Z is c = z a−→Z δnil,
namely z executes a and then with probability 1 it ends its execution. Clearly we have that a ≡w τnaτm

for all n,m ≥ 0. Let αn,m = τnaτm. Then by definition of weak trace distribution (Definition 16) we
would have that T w

Z (αn,m) = Pr(C w
max(z,αn,m)) = Pr(c) = 1, for all n,m ≥ 0. Clearly this would imply

that ∑α∈A ?
τ
T w

Z (α) = ∑n,m≥0 T w
Z (αn,m)> 1.

However we remark hat TZ is a probability distribution over A ?
τ and thus Dw

T is well defined.

We aim to show now that there is a strong relation between the trace distribution for a resolution and
its weak version: they are equivalent distributions.

Lemma 5. For each Z ∈ Res(S) we have that TZ ≡†
w T w

Z .

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 8 below.

Proposition 4. For any pair of resolutions Z1,Z2 ∈ Res(S), with initial states z1 and z2 resp., we have
that TZ1 ≡†

w TZ2 iff Pr(C w(z1,α)) = Pr(C w(z2,α)) for all α ∈A ?.

Proof. The thesis follows by the same arguments used in the proof of Theorem 4 below.

Proposition 5. The kernel of Dw
T is weak trace distribution equivalence of resolutions.

Proof. The thesis follows by the same arguments used in the proof of Theorem 9 below.

By substituting DT with Dw
T in Definition 14 we obtain the notion of weak trace metric, denoted by

the 1-bounded pseudometric dw
T .

12 Logical Characterization of Trace Metrics

Definition 17 (Weak trace metric). The weak trace metric dw
T : S×S→ [0,1] is defined for all s, t ∈ S as

dw
T (s, t) = H(Dw

T)(Res(s),Res(t)).

The kernel of the weak trace metric is weak trace equivalence.

Proposition 6. The kernel of dw
T is probabilistic weak trace equivalence.

Proof. (⇒) Assume first that dw
T (s, t) = 0. We aim to show that s≈wt t. Since

• by definition dw
T (s, t) = H(Dw

T)(Res(s),Res(t)) and

• the kernel of Dw
T is ≡†

w by Proposition 5

from dw
T (s, t) = 0 we can infer that Res(s) ≡†

w Res(t). Then, by Proposition 4 we can conclude that
s≈wt t.

(⇐) Assume now that s≈wt t. We aim to show that this implies that dw
T (s, t) = 0. By Proposition 4 we

have that s ≈wt t implies that Res(s)≡†
w Res(t). Since the kernel of Dw

T is given by ≡†
w (Proposition 5),

we can infer
dw

T (s, t) = H(Dw
T)(Res(s),Res(t)) = 0.

4 Modal logics for traces

In this section we introduce the modal logics L and Lw that will allow us to characterize resp. the strong
trace equivalence and its weak version, as well as their quantitative counterparts. The classes L and
Lw are a simplified version of the modal logic L [11] which has been successfully employed in [8] to
characterize the bisimilarity metric [6, 10, 12].

The logic L consists of two classes of formulae: the class Lt of trace formulae, which are constituted
by (finite) sequences of diamond operators and that will be used to represent traces, and the class Ld of
trace distribution formulae, which are defined as probability distributions over trace formulae and that
will be used to capture the quantitative properties of resolutions, and thus of processes.

Definition 18 (Modal logic L). The classes of trace distribution formulae Ld and trace formulae Lt over
A are defined by the following BNF-like grammar:

Ld : Ψ ::=
⊕
i∈I

riΦi Lt : Φ ::= > | 〈a〉Φ

where: (i) Ψ ranges over Ld, (ii) Φ ranges over Lt, (iii) a ∈A , (iv) I 6= /0 is a finite set of indexes, (v) the
formulae Φi for i ∈ I are pairwise distinct, namely Φi 6= Φ j for each i, j ∈ I with i 6= j and (vi) for all
i ∈ I we have ri ∈ (0,1] and ∑i∈I ri = 1.

To improve readability, we shall write r1Φ1⊕ r2Φ for
⊕

i∈I riΦi with I = {1,2} and Φ for
⊕

i∈I riΦi

with I = {i}, ri = 1 and Φi = Φ.

Definition 19 (Depth). The depth of trace distribution formulae in Ld is defined as dpt(
⊕

i∈I riΦi) =
maxi∈I dpt(Φi) where the depth of trace formulae in Lt is defined by induction on their structure as
(i) dpt(>) = 0 and (ii) dpt(〈a〉Φ) = 1+dpt(Φ).

Definition 20 (Semantics of Lt). The satisfaction relation |=⊆ C ×Lt is defined by structural induction
over trace formulae in Lt by

Valentina Castiglioni & Simone Tini 13

• c |=> always;

• c |= 〈a〉Φ iff c = s
a
� c′ for some computation c′ such that c′ |= Φ.

We say that a computation c from a process s is compatible with the trace formula Φ ∈ Lt, notation
c ∈ C t(s,Φ), if c |= Φ and |c|= dpt(Φ).
Definition 21 (Semantics of Ld). The satisfaction relation |=⊆ S×Ld is defined by
• s |=

⊕
i∈I riΦi iff there is a resolution Z ∈ Res(s) with z = corr−1

Z (s) such that for each i ∈ I we
have Pr(C t

max(z,Φi)) = ri.

We let L(s) denote the set of formulae satisfied by process s ∈ S, namely L(s) = {Ψ ∈ Ld | s |= Ψ}.
Example 4. Consider process t in Fig. 3. It is easy to verify that t |= 0.5〈a〉〈c〉>⊕0.5〈a〉〈b〉>. In fact,
if we consider the resolution Zt ∈ Res(t) in the same figure, we have that the computation c1 = zt

a
�

zt1
c
� nil is compatible with the trace formula 〈a〉〈c〉> and that the computation c2 = zt

a
� zt2

b
� nil

is compatible with the trace formula 〈a〉〈b〉>. Moreover, we have Pr(C t
max(zt ,〈a〉〈c〉>)) = 0.5 and

Pr(C t
max(zt ,〈a〉〈b〉>)) = 0.5.

The modal logic Lw differs from L solely in the labels of the diamonds in Lt
w which range over Aτ

in place of A . Hence, syntax and semantics of Lw directly follow from Definition 18 and Defs. 20-21,
resp.

We let Lw(s) denote the set of formlae satisfied by process s∈ S, namely Lw(s) = {Ψ∈Ld
w | s |= Ψ}.

We introduce the Lw-equivalence which extends the equivalence of traces ≡w to trace formulae.
Definition 22 (Lw-equivalence of formulae). The relation of Lw-equivalence of trace formulae ≡w⊆
Lt

w×Lt
w is the smallest equivalence relation satisfying (i) >≡w > and (ii) 〈a1〉Φ1 ≡w 〈a2〉Φ2 iff

• either a1 = τ and Φ1 ≡w 〈a2〉Φ2,

• or a2 = τ and 〈a1〉Φ1 ≡w Φ2

• or a1 = a2 and Φ1 ≡w Φ2.
Then, the relation of Lw-equivalence of trace distribution formulae ≡†

w⊆ Ld
w×Ld

w is obtained by lifting
≡w to a relation on probability distributions over trace formulae.
Remark 2. Clearly we have Lw/≡w =L, namely the notion of≡w coincides with the equality of formulae
when restricted to (Ld×Ld)∪ (Lt×Lt). Given any Ψ1,Ψ2 ∈ Ld, we say that Ψ1 = Ψ2 if they express
the same probability distribution over trace formulae.

Notice that we are using the same symbol ≡w to denote both the equivalence of traces and Lw-
equivalence. The meaning will always be clear from the context.

5 Logical characterization of relations

In this section we present the characterization of strong (resp. weak) trace equivalence by means of L
(resp. Lw) (Theorem 3 and Theorem 5). Following [8], we introduce the notion of mimicking formula
of a resolution as a formula expressing the trace distribution for that resolution. Mimicking formulae
characterize the (weak) trace distribution equivalence of resolutions: two resolutions are (weak) trace
distribution equivalent iff their mimicking formulae are equal (resp. Lw-equivalent) (Theorem 2 and
Theorem 4).

The mimicking formula of a resolution Z ∈ Res(S) is defined as a trace distribution formula assign-
ing a positive weight only to the maximal traces of Z . Hence, we need to identify each maximal trace
of Z with a proper trace formula. This is achieved through the notion of tracing formula of a trace.

14 Logical Characterization of Trace Metrics

Definition 23 (Tracing formula). Given any trace α ∈A ? we define the tracing formula of α , notation
Φα ∈ Lt, inductively on the structure of α as follows:

Φα =

{
> if α = ε

〈a〉Φα ′ if α = aα ′,α ′ ∈A ?.

Lemma 6. Let s ∈ S and α ∈A ?. For each c ∈ C (s) we have Tr(c) = α iff c |= Φα and |c|= dpt(Φα).

Proof. (⇒) Assume first that Tr(c) =α . We aim to show that this implies that |c|= dpt(Φα) and c |=Φα .
To this aim we proceed by induction over |c|.
• Base case |c|= 0, namely c is the empty computation. Since α = Tr(c), this gives that α = ε and

therefore, by Def. 23, Φε =>. Then from Def. 19 we gather dpt(Φα) = 0 = |c| and by Def. 20 we
are guaranteed that c |= Φε .

• Inductive step |c| > 0. Assume wlog that c = s
a
� c′. In particular this implies that |c′| < |c|.

Therefore, from α = Tr(c) we get that α must be of the form α = aα ′ for α ′ = Tr(c′). By Def. 23,
α = aα ′ implies Φα = 〈a〉Φα ′ . From α ′ = Tr(c′) and the inductive hypothesis over |c′| we get that
dpt(Φα ′) = |c′| and c′ |= Φα ′ . This, taken together with c = s

a
� c′ gives c |= Φα . Moreover, we

have
dpt(Φα) = dpt(Φα ′)+1 = |c′|+1 = |c|

thus concluding the proof.
(⇐) Assume now that |c|= dpt(Φα) and c |= Φα . We aim to show that this implies that Tr(c) = α ,

namely that c is compatible with α . From c |= Φα and the definition of tracing formula (Definition 23)
we gather that the sequence of the labels of the first dpt(Φα) execution steps of c matches α . Moreover,
|c| = dpt(Φα) implies that those steps are actually the only execution steps for c. Therefore we can
immediately conclude that Tr(c) = α .

We remark that a computation c is compatible with Φα iff c and α satisfy previous Lemma 6.
Definition 24 (Mimicking formula). Consider any resolution Z ∈ Res(S) with initial state z. We define
the mimicking formula of Z , notation ΨZ , as

ΨZ =
⊕

α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα

where, for each α ∈ Tr(Cmax(z)), the formula Φα is the tracing formula of α .
Lemma 7. For any resolution Z ∈ Res(S), the mimicking formula of Z is a well defined trace distri-
bution formula.

Proof. By definition of mimicking formula (Definition 24) we have

ΨZ =
⊕

α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα

where for each α ∈ Tr(Cmax(z)) the formula Φα is the tracing formula of trace α .
Hence, to prove that ΨZ is a well defined trace distribution formula we simply need to show that

∑
α∈Tr(Cmax(z))

Pr(Cmax(z,α)) = 1

which follows by Lemma 2 by noticing that ∑α∈Tr(Cmax(z)) Pr(Cmax(z,α)) = ∑α∈A ? Pr(Cmax(z,α)).

Valentina Castiglioni & Simone Tini 15

Example 5. Consider the resolutions Zs ∈ Res(s) and Zt ∈ Res(t) for processes s and t, resp., in Fig. 3.
The mimicking formulae for them are, resp.

ΨZs = 0.5〈a〉〈c〉>⊕0.5〈a〉>
ΨZt = 0.5〈a〉〈c〉>⊕0.5〈a〉〈b〉>.

The following results give us a first insight on the characterizing power of mimicking formulae: given
s ∈ S, the set of the mimicking formulae of its resolutions constitutes the set of formulae satisfied by s.

Proposition 7. Let s ∈ S. For each Z ∈ Res(s) it holds that s |= ΨZ .

Proof. Let Z ∈ Res(s), with z = corr−1
Z (s). Hence, by definition of mimicking formula (Definition 24)

we have that
ΨZ =

⊕
α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα

where, for each α ∈ Tr(Cmax(z)) we have that Φα is the tracing formula of α . We need to show that
s |= ΨZ , namely we need to exhibit a resolution Z̄ ∈ Res(s), with z̄ = corr−1

Z̄
(s), s.t. for each α ∈

Tr(Cmax(z)) we have that Pr(C t(z̄,Φα)) = Pr(Cmax(z,α)). We aim to show that Z is such a resolution,
namely that for each α ∈ Tr(Cmax(z)) we have

Pr(C t
max(z,Φα)) = Pr(Cmax(z,α)).

Let α ∈ Tr(Cmax(z)). By definition we have

C t
max(z,Φα) = {c ∈ Cmax(z) | c |= Φα ∧|c|= dpt(Φα)}

= {c ∈ Cmax(z) | Tr(c) = α} (by Lemma 6)

= Cmax(z,α) (α ∈ Tr(Cmax(z))).

Thus, we can conclude that

Pr(C t
max(z,Φα)) = ∑

c∈C t
max(z,Φα)

Pr(c) = ∑
c∈Cmax(z,α)

Pr(c) = Pr(Cmax(z,α)).

Theorem 1. Let s ∈ S. We have that L(s) = {1>}∪{ΨZ |Z ∈ Res(s)}.

Proof. From Proposition 7 and the definition of the relation |= (Definition 21) we can immediately infer
that {ΨZ | Z ∈ Res(s)} ⊆ L(s). Moreover 1> ∈ L(s) is immediate. To conclude the proof we need
to show that also the opposite inclusion holds, namely that L(s)\{1>} ⊆ {ΨZ |Z ∈ Res(s)}. To this
aim, consider any Ψ =

⊕
i∈I riΦi and assume that Ψ ∈ L(s). We have to show that Ψ is the mimicking

formula of some resolution for s. Since s |= Ψ, from Definition 21 we can infer that there is at least one
resolution Z ∈ Res(s) with z = corr−1

Z (s) s.t. for each i ∈ I we have Pr(C t
max(z,Φi)) = ri. We aim to

prove that among the resolutions ensuring that s |= Ψ, there is a particular resolution Z ∈ Res(s) s.t.

Ψ = ΨZ . (2)

First of all we recall that by definition of trace distribution formula (Definition 18), for each i∈ I we have
ri > 0 and moreover ∑i∈I ri = 1. By definition of C t, we have that c ∈ C t

max(z,Φi) iff c |= Φi and |c| =

16 Logical Characterization of Trace Metrics

dpt(Φi), which by Lemma 6 implies that Φi = ΦTr(c). Hence, let us consider the resolution Z ∈ Res(s)
s.t. for each i ∈ I we have C t

max(z,Φi)⊆ Cmax(z), namely the resolution s.t. the computations compatible
with the trace formulae Φi are all maximal. Notice that the existence of such a resolution is guaranteed by
s |=Ψ. Since for each c∈C t

max(z,Φi) we have c∈Cmax(z), we can infer that Tr(c)∈Tr(Cmax(z)), namely
Φi = Φα for some α ∈ Tr(Cmax(z)). This gives that whenever Φi = Φα , for some α ∈ Tr(Cmax(z)), then
we can prove (as done in the proof of Proposition 7) that

Pr(C t
max(z,Φi)) = Pr(Cmax(z,α)). (3)

Furthermore, we have obtained that {Φi | i ∈ I} ⊆ {Φα | α ∈ Tr(Cmax(z))}.
To prove Equation (2) we need to show that also the opposite inclusion holds. Assume by contra-

diction that there is at least one β ∈ Tr(Cmax(z)) s.t. there is no i ∈ I with Φi = Φβ . Then we would
have

1 = ∑i∈I ri

= ∑i∈I Pr(C t
max(z,Φi))

≤ ∑α∈Tr(Cmax(z))\{β}Pr(Cmax(z,α)) (by Equation (3))
< ∑α∈Tr(Cmax(z)) Pr(Cmax(z,α)) (β ∈ Tr(Cmax(z)) implies Pr(Cmax(z,β))> 0)
= 1 (by Lemma 2)

which is a contradiction. Hence we can conclude that {Φi | i ∈ I} = {Φα | α ∈ Tr(Cmax(z))} and thus,
due to Equation (3), that Equation (2) holds.

Remark 3. In Theorem 1, 1> is not included in the set of mimicking formulae of resolutions merely
for sake of presentation, as 1> is the mimicking formula of the resolution for s in which no action is
executed.

The following theorem states that two resolutions are trace distribution equivalent iff their mimicking
formulae are the same.

Theorem 2. Let s, t ∈ S and consider Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt =

corr−1
Zt
(t). Then ΨZs = ΨZt iff for all α ∈A ? it holds that Pr(C (zs,α)) = Pr(C (zt ,α)).

Proof. (⇒) Assume first that ΨZs = ΨZt . We aim to show that this implies Pr(C (zs,α)) = Pr(C (zt ,α))
for all α ∈A ?. By definition of mimicking formula (Definition 24) we have

ΨZs =
⊕

α∈Tr(Cmax(zs))

Pr(Cmax(zs,α))Φα

where for each α ∈ Tr(Cmax(zs)) the formula Φα is the tracing formula of α . Analogously

ΨZt =
⊕

β∈Tr(Cmax(zt))

Pr(Cmax(zt ,β))Φβ

where for each β ∈ Tr(Cmax(zt)) the formula Φβ is the tracing formula of β .
Then from the assumption ΨZs = ΨZt we gather

1. Tr(Cmax(zs)) = Tr(Cmax(zt));

2. from previous item 1 we have that Pr(Cmax(zs,α)) = Pr(Cmax(zt ,α)) for each α ∈ Tr(Cmax(zs)).

Valentina Castiglioni & Simone Tini 17

We notice that item 1 above implies the stronger relation

Tr(C (zs)) = Tr(C (zt)). (4)

In fact each α ∈ Tr(C (zs)) is either a trace in Tr(Cmax(zs)) or a proper prefix of a trace in that set. In both
cases item 1 guarantees that each trace in Tr(C (zs)) has a matching trace in Tr(C (zt)) and viceversa.

Now, consider any α ∈ A ?. We aim to show that Pr(C (zs,α)) = Pr(C (zt ,α)). For simplicity of
presentation, we can distinguish two cases.

• Pr(C (zs,α)) = 0. In this case we have that no computation from zs is compatible with α , namely
there is no computation from zs for which the sequence of the labels of the execution steps matches
α . More precisely, we have that α 6∈ Tr(C (zs)). Since by Equation (4) we have that Tr(C (zs)) =
Tr(C (zt)) we can directly conclude that α 6∈ Tr(C (zt)), namely Pr(C (zt ,α)) = 0.

• Pr(C (zs,α)) > 0. In this case we have that α ∈ Tr(C (zs)) and by Equation (4) we have that this
implies that α ∈ Tr(C (zt)). Hence we are guaranteed that Pr(C (zt ,α)) > 0. It remains to show
that Pr(C (zs,α)) = Pr(C (zt ,α)). We have

Pr(C (zs,α)) = ∑c∈Pmax(zs,α) Pr(c) (by Lemma 3)
= ∑β∈Tr(Pmax(zs,α)) Pr(Cmax(zs,β)) (by def. of Pmax)
= ∑β∈Tr(Pmax(zs,α)) Pr(Cmax(zt ,β)) (Pmax(zs,α)⊆ Cmax(zs) and item 2)
= ∑β ′∈Tr(Pmax(zt ,α)) Pr(Cmax(zt ,β

′)) (by Equation (4))
= ∑c′∈Pmax(zt ,α) Pr(c′) (by def. of Pmax)
= Pr(C (zt ,α)) (by Lemma 3).

(⇐) Assume now that for all α ∈A ? it holds that Pr(C (zs,α)) = Pr(C (zt ,α)). We aim to show that
this implies that ΨZs = ΨZt . By definition of mimicking formula (Definition 24) we have

ΨZs =
⊕

α∈Tr(Cmax(zs))

Pr(Cmax(zs,α))Φα

ΨZt =
⊕

β∈Tr(Cmax(zt))

Pr(Cmax(zt ,β))Φβ .

Therefore, to prove ΨZs = ΨZt we need to show that

Tr(Cmax(zs)) = Tr(Cmax(zt)) (5)

Pr(Cmax(zs,α)) = Pr(Cmax(zt ,α)) for each α ∈ Tr(Cmax(zs)). (6)

First of all we notice that Pr(C (zs,α)) = Pr(C (zt ,α)) for each α ∈ A ? implies that Tr(C (zs)) =
Tr(C (zt)). This is due to the fact that by definition, given any α ∈ A ?, Pr(C (zs,α)) > 0 iff there is at
least one computation c ∈ C (zs) s.t. α = Tr(c). Since Pr(C (zs,α))> 0 implies Pr(C (zt ,α))> 0 we can
infer that for each α ∈ Tr(C (zs)) there is at least one computation c′ ∈ Tr(C (zt)) s.t. α = Tr(c′), namely
Tr(C (zs))⊆ Tr(C (zt)). As the same reasoning can be applied symmetrically to each α ∈ Tr(C (zt)), we
can conclude that

Tr(C (zs)) = Tr(C (zt)). (7)

Next we aim to show that a similar result holds even if we restrict our attention to maximal computations,
that is we aim to prove Equation (5).

18 Logical Characterization of Trace Metrics

Let α ∈ Tr(Cmax(zs)). Notice that for this α we have Cmax(zs,α)⊆ Pmax(zs,α). Then we have

Pr(C (zs,α)) = ∑c∈Pmax(zs,α) Pr(c) (by Lemma 3)
= ∑c∈Cmax(zs,α) Pr(c)+∑c′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′).

(8)

Moreover, by Lemma 3 it holds that Pr(C (zt ,α)) = ∑c′′∈Pmax(zt ,α) Pr(c′′).
Therefore, from Pr(C (zs,α)) = Pr(C (zt ,α)) we gather that

∑
c∈Cmax(zs,α)

Pr(c)+ ∑
c′∈Pmax(zs,α)\Cmax(zs,α)

Pr(c′) = ∑
c′′∈Pmax(zt ,α)

Pr(c′′). (9)

Assume by contradiction that Pmax(zt ,α)∩Cmax(zt ,α) = /0, namely there is no maximal computation
from zt which is compatible with α . Then for each action a ∈ A consider the trace αa and define
Addzs(α) = {a ∈ A | αa ∈ Tr(C (zs))}. From Equation (7) we can directly infer that Addzs(α) =
Addzt (α). Moreover, since we are assuming that no maximal computation from zt is compatible with α ,
we get ⋃

a∈Addzs (α)

Pmax(zs,αa) = Pmax(zs,α)\Cmax(zs,α) (10)

⋃
a∈Addzt (α)

Pmax(zt ,αa) = Pmax(zt ,α) (11)

where the unions are guaranteed to be disjoint (a single computation cannot be compatible with more
than one trace αa). Furthermore, by Lemma 3 we have that for each a ∈ Addzs(α)

Pr(C (zs,αa)) = ∑c1∈Pmax(zs,αa) Pr(c1)

Pr(C (zt ,αa)) = ∑c2∈Pmax(zt ,αa) Pr(c2)

from which we get that for each a ∈ Addzs(α) it holds that

∑
c1∈Pmax(zs,αa)

Pr(c1) = ∑
c2∈Pmax(zt ,αa)

Pr(c2). (12)

Therefore we have that

∑c∈Cmax(zs,α) Pr(c)+∑c′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′)
= ∑c∈Cmax(zs,α) Pr(c)+∑c′∈

⋃
a∈Addzs (α) Pmax(zs,αa) Pr(c′) (by Equation (10))

= ∑c∈Cmax(zs,α) Pr(c)+∑a∈Addzs (α)

(
∑c′∈Pmax(zs,αa) Pr(c′)

)
(disjoint union)

= ∑c∈Cmax(zs,α) Pr(c)+∑a∈Addzs (α)

(
∑c′′∈Pmax(zt ,αa) Pr(c′′)

)
(by Equation (12))

= ∑c∈Cmax(zs,α) Pr(c)+∑c′′∈
⋃

a∈Addzt (α) Pmax(zt ,αa) Pr(c′′) (Addzs(α) = Addzt (α) and disjoint union)
= ∑c∈Cmax(zs,α) Pr(c)+∑c′′∈Pmax(zt ,α) Pr(c′′) (by Equation (11)).

Thus we have obtained that

∑
c∈Cmax(zs,α)

Pr(c)+ ∑
c′∈Pmax(zs,α)\Cmax(zs,α)

Pr(c′) = ∑
c∈Cmax(zs,α)

Pr(c)+ ∑
c′′∈Pmax(zt ,α)

Pr(c′′)

which, since by the choice of α we have that ∑c∈Cmax(zs,α) Pr(c)> 0, is in contradiction with Equation (9).
Therefore, we have obtained that whenever α ∈ Tr(Cmax(zs)) then there is at least one maximal compu-
tation c from zt s.t. α = Tr(c), that is Tr(Cmax(zs)) ⊆ Tr(Cmax(zt)). Since the same reasoning can be
applied symmetrically to each α ∈ Tr(Cmax(zt)) we gather that also Tr(Cmax(zt))⊆ Tr(Cmax(zs)) holds.
The two inclusions give us Equation (5).

Finally, we aim to prove Equation (6). Let α ∈ Tr(Cmax(zs)). We can distinguish two cases.

Valentina Castiglioni & Simone Tini 19

• |α| = dpt(zs). First of all we notice that from Equation (7) and the assumption Pr(C (zs,β)) =
Pr(C (zt ,β)) for each β ∈A ?, we can infer that |α|= dpt(zt). Hence, we have

Pr(Cmax(zs,α)) = Pr(C (zs,α)) = Pr(C (zt ,α)) = Pr(Cmax(zt ,α)).

• |α|< dpt(zs). Then we have

Pr(Cmax(zs,α))
= ∑c∈Cmax(zs,α) Pr(c)
= ∑c′∈Pmax(zs,α) Pr(c′)−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)
= Pr(C (zs,α))−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)
= Pr(C (zt ,α))−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)
= ∑c′′′∈Pmax(zt ,α) Pr(c′′′)−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)
= ∑c1∈Cmax(zt ,α) Pr(c1)+∑c2∈Pmax(zt ,α)\Cmax(zt ,α) Pr(c2)−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)
= ∑c1∈Cmax(zt ,α) Pr(c1)+∑c2∈

⋃
b∈Addzt (α) Pmax(zt ,αb) Pr(c2)−∑c′′∈

⋃
b∈Addzs (α) Pmax(zs,αb) Pr(c′′)

= ∑c1∈Cmax(zt ,α) Pr(c1)+∑b∈Addzt (α)

(
∑c2∈Pmax(zt ,αb) Pr(c2)

)
−∑b∈Addzs (α)

(
∑c′′∈Pmax(zs,αb) Pr(c′′)

)
= ∑c1∈Cmax(zt ,α) Pr(c1)+∑b∈Addzt (α) Pr(C (zt ,αb))−∑b∈Addzs (α) Pr(C (zs,αb))
= ∑c1∈Cmax(zt ,α) Pr(c1)

= Pr(Cmax(zt ,α))

where

– the second and the sixth steps follow by Equation (8);
– the third, fifth and ninth steps follow by Lemma 3;
– the fourth step follows by the initial assumption which guarantees that Pr(C (zs,α))=Pr(C (zt ,α));
– the seventh step follows by Equation (10);
– the tenth step follows by Addzs(α) = Addzt (α) (given by Equation (7)) and the initial as-

sumption which guarantees that for each b ∈ Addzs(α), Pr(C (zs,αb)) = Pr(C (zt ,αb)).

Then we can derive the characterization result for the strong case: two processes s, t are strong trace
equivalent iff they satisfy the same formulae in L.

Theorem 3. For all s, t ∈ S we have that s≈st t iff L(s) = L(t).

Proof. (⇒) Assume first that s ≈st t. We aim to sow that this implies that L(s) = L(t). By Definition 6
s≈st t implies that

(i) for each resolution Zs ∈ Res(s), with zs = corr−1
Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈A ? we have Pr(C (zs,α)) = Pr(C (zt ,α));

(ii) for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈A ? we have Pr(C (zs,α)) = Pr(C (zt ,α)).

Consider any Zs ∈Res(s), with zs = corr−1
Zs
(s), and let Zt ∈Res(t), with zt = corr−1

Zt
(t), be any resolution

of t satisfying item (i) above. By Theorem 2, Pr(C (zs,α)) = Pr(C (zt ,α)) for all α ∈ A ? implies that
ΨZs = ΨZt . More precisely, we have that

for each Zs ∈ Res(s) there is Zt ∈ Res(t) s.t. ΨZs = ΨZt . (13)

20 Logical Characterization of Trace Metrics

Symmetrically, item (ii) above taken together with Theorem 2 gives that

for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt = ΨZs . (14)

Therefore, from Equations (13) and (14) we gather

{ΨZs |Zs ∈ Res(s)}= {ΨZt |Zt ∈ Res(t)}. (15)

By Theorem 1 we have that L(s) = {1>}∪{ΨZs | Zs ∈ Res(s)} and similarly L(t) = {1>}∪{ΨZt |
Zt ∈ Res(t)}. Therefore, from Equation (15) we can conclude that L(s) = L(t).

(⇐) Assume now that L(s) = L(t). We aim to show that this implies that s ≈st t. By Theorem 1
we have that L(s) = {1>}∪{ΨZs |Zs ∈ Res(s)} and analogously L(t) = {1>}∪{ΨZt |Zt ∈ Res(t)}.
Hence, from the assumption we can infer that {ΨZs |Zs ∈ Res(s)}= {ΨZt |Zt ∈ Res(t)}.

Clearly the equality between the two sets implies that

• for each Zs ∈ Res(s) there is a Zt ∈ Res(t) s.t. ΨZs = ΨZt and

• for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt = ΨZs .

By applying Theorem 2 to the two items above we obtain that

• for each resolution Zs ∈ Res(s), with zs = corr−1
Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈A ? we have Pr(C (zs,α)) = Pr(C (zt ,α));

• for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈A ? we have Pr(C (zs,α)) = Pr(C (zt ,α));

from which we can conclude that s≈st t.

The notions of tracing formula and mimicking formula and the related results Lemma 6, Lemma 7,
Proposition 7 and Theorem 1 can be easily extended to the weak case by extending the set of traces A ?

to the set A ?
τ .

The following theorem gives the characterization of weak trace distribution equivalence: two resolu-
tions are weak trace distribution equivalent iff their mimicking formulae are Lw-equivalent.

To simplify the upcoming proofs, we introduce an alternative version of the weak mimicking formula,
which captures the weak trace distribution (see Definition 16) of resolutions.

Definition 25. Consider any resolution Z ∈ Res(S) with initial state z. We define the weak mimicking
formula of Z as the trace distribution formula Ψw

Z given by

Ψ
w
Z =

⊕
α∈Trw(Cmax(z))

Pr(C w
max(z,α))Φα

where, for each α ∈ Trw(Cmax(z)), the formula Φα is the tracing formula of α .

Notice that from the definitions of C w
max(,) and Trw() we can infer that Ψw represents a trace

distribution formula over the quotient space of Lw wrt. ≡w, that is Ψw ∈ Ld.

Lemma 8. For each Z ∈ Res(S) it holds that ΨZ ≡†
w Ψw

Z .

Proof. Consider Z ∈ Res(S) with initial state z. First of all we recall that by definition of mimicking
formula (Definition 24) we have

ΨZ =
⊕

α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα

Valentina Castiglioni & Simone Tini 21

where for each α ∈ Tr(Cmax(z)), the formula Φα is the tracing formula of α . By definition of weak
mimicking formula (Definition 25) we have

Ψ
w
Z =

⊕
β∈Trw(Cmax(z))

Pr(C w
max(z,β))Φβ

where for each β ∈ Trw(Cmax(z)), the formula Φβ is the tracing formula of β . Moreover, we have that
for each β ∈ Trw(Cmax(z))

Pr(C w
max(z,β)) = ∑c∈C w

max(z,β) Pr(c)
= ∑c∈Cmax(z) s.t. Tr(c)≡wβ Pr(c)
= ∑α∈Tr(Cmax(z)) s.t. α≡wβ Pr(Cmax(z,α)).

Furthermore, by definition of tracing formula (Definition 23) and of ≡w (Definition 7), it is immediate
that α ≡w β iff Φα ≡w Φβ , for each α,β ∈A ?. For simplicity, we denote by αβ each α ∈ Tr(Cmax(z))
s.t. α ≡w β for some β ∈ Trw(Cmax(z)). Notice that by construction of Trw(), no trace α ∈ Tr(Cmax(z))
can be equivalent to more than one β ∈ Trw(Cmax(z)). Therefore, we have obtained that

Ψw
Z =

⊕
β∈Trw(Cmax(z)) Pr(C w

max(z,β))Φβ

≡†
w

⊕
β∈Trw(Cmax(z))
α

β
∈Tr(Cmax(z))

Pr(Cmax(z,αβ))Φαβ

≡†
w

⊕
α∈Tr(Cmax(z)) Pr(Cmax(z,α))Φα

= ΨZ .

Theorem 4. Let s, t ∈ S and consider Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt =

corr−1
Zt
(t). Then ΨZs ≡†

w ΨZt iff for all α ∈A ? it holds that Pr(C w(zs,α)) = Pr(C w(zt ,α)).

Proof. (⇒) Assume first that ΨZs ≡†
w ΨZt . We aim to show that this implies Pr(C w(zs,α))=Pr(C w(zt ,α))

for all α ∈A ?. By Lemma 8 we have that

ΨZs ≡
†
w Ψ

w
Zs

and ΨZt ≡
†
w Ψ

w
Zt
.

Thus, ΨZs ≡†
w ΨZt implies Ψw

Zs
≡†

w Ψw
Zt

. Hence the prove the proof obligation, it is enough to prove that

Ψ
w
Zs
≡†

w Ψ
w
Zt

implies Pr(C w(zs,α)) = Pr(C w(zt ,α)) for each α ∈A ?. (16)

From Ψw
Zs
≡†

w Ψw
Zt

we get that

Ψ
w
Zt

=
⊕

α∈Trw(Cmax(zs))
βα∈Trw(Cmax(zt))∩[α]w

Pr(C w
max(zt ,βα))Φβα

with ∑βα∈Trw(Cmax(zt))∩[α]w Pr(C w
max(zt ,βα))=Pr(C w

max(zs,α)) and Φβα
≡w Φα for each βα ∈Trw(Cmax(zt))∩

[α]w,α ∈ Trw(Cmax(zs)).
We notice that by definition the elements of Trw(Cmax(zt)) represent distinct equivalence classes with

respect to≡w. Thus we are guaranteed that for each α ∈ Trw(Cmax(zt))∩ [α]w contains a single trace βα .
Therefore, in this particular case, Ψw

Zs
≡†

w Ψw
Zt

is equivalent to say that Ψw
Zs

= Ψw
Zt

. Moreover, since the
representative of the equivalence classes wrt ≡w can always be chosen in A ?, we can always construct

22 Logical Characterization of Trace Metrics

the sets Trw(Cmax(zs)) and Trw(Cmax(zt)) in such a way that Trw(Cmax(zs))∩A ? = Trw(Cmax(zs)) and
Trw(Cmax(zt))∩A ? = Trw(Cmax(zt)). Hence, the same argumentations presented in the first part of the
proof of Theorem 2 allow us to prove the proof obligation Equation (16).

(⇐) Assume now that for all α ∈ A ? it holds that Pr(C w(zs,α)) = Pr(C w(zt ,α)). We aim to
show that this implies that ΨZs ≡†

w ΨZt . To this aim we show that the assumption Pr(C w(zs,α)) =
Pr(C w(zt ,α)) for all α ∈A ? implies Ψw

Zs
= Ψw

Zt
. This follows from the same argumentations presented

in the second part of the proof of Theorem 2. Then, since from Lemma 8 we have ΨZs ≡†
w Ψw

Zs
and

ΨZt ≡†
w Ψw

Zt
, we can conclude that ΨZs ≡†

w ΨZt as required.

Then we can derive the characterization result for the weak case: two processes s, t are weak trace
equivalent iff they satisfy equivalent formulae in Lw.
Theorem 5. For all s, t ∈ S we have that s≈wt t iff Lw(s)≡†

w Lw(t).

Proof. (⇒) Assume first that s ≈wt t. We aim to sow that this implies that Lw(s) ≡†
w Lw(t). By Defini-

tion 8 s≈wt t implies that
(i) for each resolution Zs ∈ Res(s), with zs = corr−1

Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈A ? we have Pr(C w(zs,α)) = Pr(C w(zt ,α));

(ii) for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈A ? we have Pr(C w(zs,α)) = Pr(C w(zt ,α)).

Consider any Zs ∈Res(s), with zs = corr−1
Zs
(s), and let Zt ∈Res(t), with zt = corr−1

Zt
(t), be any resolution

of t satisfying item (i) above. By Theorem 4, Pr(C w(zs,α)) = Pr(C w(zt ,α)) for all α ∈A ? implies that
ΨZs ≡†

w ΨZt . More precisely, we have that

for each Zs ∈ Res(s) there is Zt ∈ Res(t) s.t. ΨZs ≡
†
w ΨZt . (17)

Symmetrically, item (ii) above taken together with Theorem 4 gives that

for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt ≡
†
w ΨZs . (18)

Therefore, from Equations (17) and (18) we gather

{ΨZs |Zs ∈ Res(s)} ≡†
w {ΨZt |Zt ∈ Res(t)}. (19)

By Theorem 1 we have that Lw(s) = {1>}∪{ΨZs |Zs ∈ Res(s)} and similarly Lw(t) = {1>}∪{ΨZt |
Zt ∈ Res(t)}. Therefore, from Equation (19) we can conclude that Lw(s)≡†

w Lw(t).
(⇐) Assume now that Lw(s)≡†

w Lw(t). We aim to show that this implies that s≈wt t. By Theorem 1
we have that Lw(s)= {1>}∪{ΨZs |Zs ∈Res(s)} and analogously Lw(t)= {1>}∪{ΨZt |Zt ∈Res(t)}.
Hence, from the assumption we can infer that {ΨZs |Zs ∈ Res(s)} ≡†

w {ΨZt |Zt ∈ Res(t)}.
Clearly the equivalence between the two sets implies that
• for each Zs ∈ Res(s) there is a Zt ∈ Res(t) s.t. ΨZs ≡†

w ΨZt and

• for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt ≡†
w ΨZs .

By applying Theorem 4 to the two items above we obtain that
• for each resolution Zs ∈ Res(s), with zs = corr−1

Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈A ? we have Pr(C w(zs,α)) = Pr(C w(zt ,α));

• for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈A ? we have Pr(C w(zs,α)) = Pr(C w(zt ,α));

from which we can conclude that s≈wt t.

Valentina Castiglioni & Simone Tini 23

6 Logical characterization of trace metrics

In this section we present the logical characterization of strong and weak trace metric (resp. Theorem 8
and Theorem 11). We define a suitable distance on formulae in L (resp. Lw) and we characterize the
strong (resp. weak) trace metric between processes as the distance between the sets of formulae satisfied
by them.

6.1 L-characterization of strong trace metric

Firstly, we need to define a distance on trace formulae.
Definition 26 (Distance on Lt). The function D t

L : Lt×Lt→ [0,1] is defined over Lt as follows:

D t
L(Φ1,Φ2) =

{
0 if Φ1 = Φ2

1 otherwise.

Proposition 8. The function D t
L is a 1-bounded metric over Lt.

Proof. The thesis follows by noticing that D t
L is the discrete metric over Lt.

To define a distance over trace distribution formulae we see them as probability distribution over
trace formulae and we define the distance over Ld as the Kantorovich lifting of the metric D t

L.
Definition 27 (Distance on Ld). The function Dd

L : Ld×Ld→ [0,1] is defined over Ld as follows:

Dd
L(Ψ1,Ψ2) = K(D t

L)(Ψ1,Ψ2).

Proposition 9. The function Dd
L is a 1-bounded metric over Ld.

Proof. First we prove that Dd
L is a metric over Ld, namely that

1. Dd
L(Ψ1,Ψ2) = 0 iff Ψ1 = Ψ2;

2. Dd
L(Ψ1,Ψ2) = Dd

L(Ψ2,Ψ1);

3. Dd
L(Ψ1,Ψ2)≤Dd

L(Ψ1,Ψ3)+Dd
L(Ψ3,Ψ2).

Proof of item 1
(⇐) Assume first that Ψ1 = Ψ2. Then Dd

L(Ψ1,Ψ2) = 0 immediately follows from Definition 27,
since the Kantorovich metric is a pseudometric.

(⇒) Assume now that Dd
L(Ψ1,Ψ2) = 0. We aim to show that this implies that Ψ1 = Ψ2. Assume

wlog. that Ψ1 =
⊕

i∈I riΦi and that Ψ2 =
⊕

j∈J r jΦ j. Then we have

Dd
L(Ψ1,Ψ2) = min

w∈W(Ψ1,Ψ2)
∑

i∈I, j∈J
w(Φi,Φ j)D

t
L(Φi,Φ j) (20)

and the distance in Equation (20) is 0 if, given the optimal matching w̄

w̄(Φi,Φ j)> 0 iff D t
L(Φi,Φ j) = 0.

By Proposition 8 we have that D t
L(Φi,Φ j) = 0 iff Φi = Φ j. In particular, let Φ ji be any formula in

{Φ j | j ∈ J} s.t. Φi = Φ ji . Since by Definition 18 the trace formulae Φi occurring in Ψ1 are pairwise
distinct and, analogously, the trace formulae Φ j occurring in Ψ2 are pairwise distinct, we gather that

ri = ∑ j∈J w̄(Φi,Φ j) = ∑ ji∈J w̄(Φi,Φ ji) = w̄(Φi,Φ ji)
r j = ∑i∈I w̄(Φi,Φ j) = ∑i j∈I w̄(Φi j ,Φ j) = w̄(Φi j ,Φ j).

24 Logical Characterization of Trace Metrics

Therefore we can infer that Ψ1 = Ψ2 as probability distributions over Lt.
Proof of item 2 Immediate from the discrete metric and the matching being both symmetric.
Proof of item 3 Assume wlog. that Ψ1 =

⊕
i∈I riΦi, Ψ2 =

⊕
j∈J r jΦ j and Ψ3 =

⊕
h∈H rhΦh.

Let w1,3 ∈W(Ψ1,Ψ3) be an optimal matching for Ψ1,Ψ3, namely

Dd
L(Ψ1,Ψ3) = min

w∈W(Ψ1,Ψ3)
∑
i∈I

h∈H

w(Φi,Φh)D
t
L(Φi,Φh) = ∑

i∈I
h∈H

w1,3(Φi,Φh)D
t
L(Φi,Φh)

and let w2,3 ∈W(Ψ2,Ψ3) be an optimal matching for Ψ2,Ψ3, that is

Dd
L(Ψ2,Ψ3) = min

w∈W(Ψ2,Ψ3)
∑
j∈J

h∈H

w(Φ j,Φh)D
t
L(Φ j,Φh) = ∑

j∈J
h∈H

w2,3(Φ j,Φh)D
t
L(Φ j,Φh).

Consider now the function f : I× J×H→ [0,1] defined by

f (i, j,h) =w1,3(Φi,Φh) ·w2,3(Φ j,Φh) ·
1
rh
.

Then, we have ∑ j∈J f (i, j,h) = w1,3(Φi,Φh) namely the projection of f over the first and third compo-
nents coincides with the optimal matching for Ψ1,Ψ3. Similarly, ∑i∈I f (i, j,h) = w2,3(Φ j,Φh) namely
the projection of f over the second and third components coincides with the optimal matching for Ψ2,Ψ3.
Moreover, it holds that ∑ j∈J,h∈H f (i, j,h) = ri and ∑i∈I,h∈H f (i, j,h) = r j, that is f (i, j,h) is a matching
in W(Ψ1,Ψ2). Therefore,

Dd
L(Ψ1,Ψ2) = minw∈W(Ψ1,Ψ2) ∑i∈I, j∈J w(Φi,Φ j)D t

L(Φi,Φ j) (by definition)
≤ ∑i∈I, j∈J,h∈H f (i, j,h)D t

L(Φi,Φ j) (by construction of f)
≤ ∑i∈I, j∈J,h∈H f (i, j,h)

(
D t

L(Φi,Φh) + D t
L(Φ j,Φh)

)
(since D t

L is a metric)
= ∑i∈I, j∈J,h∈H f (i, j,h)D t

L(Φi,Φh)+

∑i∈I, j∈J,h∈H f (i, j,h)D t
L(Φ j,Φh)

= ∑i∈I,h∈H

(
∑ j∈J f (i, j,h)

)
·D t

L(Φi,Φh)+

∑ j∈J,h∈H

(
∑i∈I f (i, j,h)

)
·D t

L(Φ j,Φh)

= ∑i∈I,h∈H w1,3(Φi,Φh)D
t
L(Φi,Φh)+

∑ j∈J,h∈H w2,3(Φ j,Φh)D
t
L(Φ j,Φh) (by construction of f)

= K(D t
L)(Ψ1,Ψ3)+K(D t

L)(Ψ3,Ψ2) (by definition of w1,3,w2,3)
= Dd

L(Ψ1,Ψ3)+Dd
L(Ψ3,Ψ2) (by definition).

To conclude, we need to show that Dd
L is 1-bounded, namely that for each Ψ1,Ψ2 ∈ Ld we have

Dd
L(Ψ1,Ψ2)≤ 1. Assume wlog that Ψ1 =

⊕
i∈I riΦi and Ψ2 =

⊕
j∈J r j ∈Φ j. We have

Dd
L(Ψ1,Ψ2) = minw∈W(Ψ1,Ψ2) ∑i∈I, j∈J w(Φi,Φ j)D t

L(Φi,Φ j)

≤ ∑i∈I, j∈J w(Φi,Φ j)D t
L(Φi,Φ j) (for an arbitrary w)

≤ ∑i∈I, j∈J w(Φi,Φ j) (D t
L is either 1 or 0)

= 1 (w is probability distribution).

Valentina Castiglioni & Simone Tini 25

Example 6. Consider the trace distribution formulae Ψ1 = 0.6〈a〉〈b〉>⊕0.4〈a〉〈c〉> and Ψ2 = 0.7〈a〉〈c〉>⊕
0.3〈a〉〈b〉>. We have that

Dd
L(Ψ1,Ψ2) = minw∈W(Ψ1,Ψ2) ∑ Φ∈supp(Ψ1)

Φ′∈supp(Ψ2)
w(Φ,Φ′)D t

L(Φ,Φ′)

≤ 0.3 ·D t
L(〈a〉〈b〉>,〈a〉〈b〉>)+0.4 ·D t

L(〈a〉〈c〉>,〈a〉〈c〉>)+0.3 ·D t
L(〈a〉〈b〉>,〈a〉〈c〉>)

= 0.3 ·0+0.4 ·0+0.3 ·1
= 0.3

Next result derives from our characterization of trace distribution equivalence of resolutions (Theo-
rem 2).

Theorem 6. The kernel of Dd
L is trace distribution equivalence of resolutions.

Proof. Let s, t ∈ S and consider Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt = corr−1

Zs
(t).

By Theorem 2 we have that zs ≈st zt iff ΨZs = ΨZt . Since by Proposition 9 Dd
L is a metric on Ld, we

have that Dd
L(ΨZs ,ΨZt) = 0 iff ΨZs = ΨZt . Thus we can conclude that

zs ≈st zt iff ΨZs = ΨZt iff Dd
L(ΨZs ,ΨZt) = 0.

We lift the distance over formulae to a distance over processes as the Hausdorff distance between the
sets of formulae satisfied by them.

Definition 28. The L-distance over processes DL : S×S→ [0,1] is defined, for all s, t ∈ S, by

DL(s, t) = H(Dd
L)(L(s),L(t)).

Proposition 10. The mapping DL is a 1-bounded pseudometric over S.

Proof. First we show that DL is a pseudometric over S, namely that for each s, t,u ∈ S

DL(s,s) = 0 (21)

DL(s, t) = DL(t,s) (22)

DL(s, t)≤DL(s,u)+DL(u, t) (23)

Equation (21) and Equation (22) are immediate from the definition of DL (Definition 28).
Let us prove Equation (23). Firstly, we notice that from the definition of Hausdorff distance we have

DL(s, t) = max{ sup
Ψ∈L(s)

inf
Ψ′∈L(t)

Dd
L(Ψ,Ψ′), sup

Ψ′∈L(t)
inf

Ψ∈L(s)
Dd

L(Ψ,Ψ′)}.

Thus, for all s, t,u ∈ S we can infer that

sup
Ψ∈L(s)

inf
Ψ′′∈L(u)

Dd
L(Ψ,Ψ′′)≤DL(s,u) (24)

sup
Ψ′′∈L(u)

inf
Ψ′∈L(t)

Dd
L(Ψ

′′,Ψ′)≤DL(u, t). (25)

As a first step, we aim to show that

sup
Ψ∈L(s)

inf
Ψ′∈L(t)

Dd
L(Ψ,Ψ′)≤DL(s,u)+DL(u, t). (26)

26 Logical Characterization of Trace Metrics

For sake of simplicity, we index formulae in L(s) by indexes in the set J, formulae in L(t) by indexes in
set I and formulae in L(u) by indexes in H. By definition of infimum we have that for each ε1 > 0

for each Ψ j ∈ L(s) there is a Ψh j ∈ L(u) s.t. Dd
L(Ψ j,Ψh j)< inf

Ψh∈L(u)
Dd

L(Ψ j,Ψh)+ ε1 (27)

and analogously for each ε2 > 0

for each Ψh ∈ L(u) there is a Ψih ∈ L(t) s.t. Dd
L(Ψh,Ψih)< inf

Ψi∈L(t)
Dd

L(Ψh,Ψi)+ ε2. (28)

In particular given Ψ j ∈ L(s) let Ψh j ∈ L(u) be the index realizing Equation (27), with respect to ε1, and
let Ψih j

∈ L(t) be the index realizing Equation (28) with respect to Ψh j and ε2. Then we have

Dd
L(Ψ j,Ψih j

)

≤ Dd
L(Ψ j,Ψh j)+Dd

L(Ψh j ,Ψih j
) (Dd

L is a metric)
<

(
infΨh∈L(u) Dd

L(Ψ j,Ψh)+ ε1
)
+
(

infΨi∈L(t) Dd
L(Ψh j ,Ψi)+ ε2

)
(by Eqs. 27 and 28)

≤
(

supΨ j∈L(s) infΨh∈L(u) Dd
L(Ψ j,Ψh)+ ε1

)
+
(

supΨh∈L(u) infΨi∈L(t) Dd
L(Ψh,Ψi)+ ε2

)
from which we gather

inf
Ψi∈L(t)

Dd
L(Ψ j,Ψi)≤Dd

L(Ψ j,Ψih j
)< sup

Ψ j∈L(s)
inf

Ψh∈L(u)
Dd

L(Ψ j,Ψh)+ sup
Ψh∈L(u)

inf
Ψi∈L(t)

Dd
L(Ψh,Ψi)+ ε1 + ε2.

Thus, since j was arbitrary, we obtain

sup
Ψ j∈L(s)

inf
Ψi∈L(t)

Dd
L(Ψ j,Ψi)≤ sup

Ψ j∈L(s)
inf

Ψh∈L(u)
Dd

L(Ψ j,Ψh)+ sup
Ψh∈L(u)

inf
Ψi∈L(t)

Dd
L(Ψh,Ψi)+ ε1 + ε2

and since this relation holds for any ε1 and ε2 we can conclude that

sup
Ψ j∈L(s)

inf
Ψi∈L(t)

Dd
L(Ψ j,Ψi)≤ sup

Ψ j∈L(s)
inf

Ψh∈L(u)
Dd

L(Ψ j,Ψh)+ sup
Ψh∈L(u)

inf
Ψi∈L(t)

Dd
L(Ψh,Ψi).

Then, by the inequalities in Equation (24) and Equation (25) we can conclude that

sup
Ψ j∈L(s)

inf
Ψi∈L(t)

Dd
L(Ψ j,Ψi)≤DL(s,u)+DL(u, t)

and thus Equation (26) holds. Switching the roles of s and t in the steps above allows us to infer

sup
Ψi∈L(t)

inf
Ψ j∈L(s)

Dd
L(Ψ j,Ψi)≤DL(s,u)+DL(u, t). (29)

Finally, we have

DL(s, t) = max{supΨ j∈L(s) infΨi∈L(t) Dd
L(Ψ j,Ψi),supΨi∈L(t) infΨ j∈L(s) Dd

L(Ψ j,Ψi)} (by definition)
≤ DL(s,u)+DL(u, t)

where the last relation follows by Equations (26) and (29).
To conclude, we need to show that DL is 1-bounded. We have

DL(s, t) = H(Dd
L)(L(s),L(t))

= max
{

supΨi∈L(s) infΨ j∈L(t) Dd
L(Ψi,Ψ j), supΨ j∈L(t) infΨi∈L(s) Dd

L(Ψi,Ψ j)
}

≤ max{1, 1} (Dd
L is 1-bounded)

= 1.

Valentina Castiglioni & Simone Tini 27

Proposition 11. Let s ∈ S. The set L(s) is a closed subset of L wrt. the topology induced by Dd
L.

Proof. As we are working on a metric space, the proof obligation is equivalent to prove that each se-
quence in L(s) that admits a limit converges in L(s), namely

for each {Ψn}n∈N ⊆ L(s) s.t. there is Ψ ∈ L with lim
n→∞

Ψn = Ψ then Ψ ∈ L(s). (30)

From Theorem 1 we have that L(s) = {>}∪{ΨZ |Z ∈ Res(s)}. Since a finite union of closed sets is
closed, the proof obligation Equation (30) is equivalent to prove that

{>} is closed (31)

{ΨZ |Z ∈ Res(s)} is closed (32)

Equation (31) is immediate since the only sequence in {>} admitting a limit is the constant sequence
Ψn => for all n ∈ N.

Let us deal now with Equation (32). First of all, we notice that sequences in {ΨZ |Z ∈ Res(s)} can
be written in the general form

Ψn =
⊕
i∈In

r(n)i Φ
(n)
i

with {
⊕

i∈In
r(n)i Φ

(n)
i }n∈N ⊆ L(s)\{>}.

Assume that there is a trace distribution formula Ψ ∈ Ld s.t. limn→∞ Ψn = Ψ. We aim to show that
Ψ ∈ L(s), namely that

Ψ = ΨZ for some Z ∈ Res(s). (33)

In what follows, we assume wlog that limit trace distribution formula Ψ has the form Ψ =
⊕

j∈J r jΦ j.

From {
⊕

i∈In
r(n)i Φ

(n)
i }n∈N ⊆ L(s) \ {>} we gather that for each n ∈ N there is a resolution Zn ∈

Res(s) s.t. ΨZn =
⊕

i∈In
r(n)i Φ

(n)
i . For each n ∈ N, let zn = corr−1

Zn
(s). Then ΨZn =

⊕
i∈In

r(n)i Φ
(n)
i implies

that In = Tr(Cmax(zn)), namely In is the set of traces to which the maximal computations of the process
zn are compatible. Hence, for each i ∈ In we have that Φ

(n)
i is the tracing formula of trace i (or to be more

formal of the trace indexed by i) and r(n)i = Pr(Cmax(zn, i)).
We notice that

limn→∞ Ψn = Ψ

iff limn→∞ Dd
L(Ψn,Ψ) = 0

iff limn→∞ K(D t
L)(Ψn,Ψ) = 0

that is iff the sequence {Ψn}n∈N converges to Ψ with respect to the Kantorovich metric. Since we are
considering distributions with finite support, the convergence with respect to the Kantorovich metric is
equivalent to the weak convergence of probability distributions (also called convergence in distribution)
which states that limn→∞ Ψn(Φ) = Ψ(Φ) for each continuity point Φ ∈ Lt of Ψ. Since the probability
distribution over trace formuale Ψ is discrete and with finite support, its continuity points are the trace
formulae which are not in its support. Hence, we have that limn→∞ Ψn(Φ) = 0 for each Φ 6∈ {Φ j | j ∈ J}.
More specifically, we obtain that limn→∞ In = J which gives that if there is an index ĩ s.t. limn→∞ Φ

(n)
ĩ 6∈

{Φ j | j ∈ J}, or if {Φ(n)
ĩ }n∈N has no limit, then limn→∞ r(n)ĩ = 0. Furthermore, since D t

L is the discrete
metric over Lt, we have that a sequence of trace formulae {Φ(n)}n∈N converges to Φ iff the sequence is
definitively constant, namely iff there is an N ∈N s.t. Φ(n) =Φ for all n≥N. Therefore, from limn→∞ In =
J we can infer that there is an N ∈ N s.t. In = J for all n ≥ N. Consequently, by construction of the sets

28 Logical Characterization of Trace Metrics

In, we obtain that J = Tr(Cmax(zN)) thus giving that, for each j ∈ J, Φ j is the tracing formula of the trace
j (or more formally of the trace indexed by j) and r j = Pr(Cmax(zN , j)). Thus, from Definition 24, we
infer that the resolution ZN ∈ Res(s), namely the resolution whose mimicking formula corresponds to
the N-th trace distribution formula in the sequence {Ψn}n∈N, is s.t. Ψ = ΨZN , thus proving Equation (33)
and concluding the proof.

From our L-characterization of strong trace equivalence (Theorem 3) we obtain the following result.

Theorem 7. The kernel of DL is trace equivalence.

Proof. (⇒) Assume first that s≈st t. We aim to show that this implies that DL(s, t) = 0. By Theorem 3
we have that s≈st t implies that L(s) = L(t) from which we gather

DL(s, t) = H(Dd
L)(L(s),L(t)) = 0.

(⇐) Assume now that DL(s, t) = 0. We aim to show that this implies that s ≈st t. Since L(s) and L(t)
are closed by Proposition 11 and since DL is a pseudometric by Proposition 10, from DL(s, t) = 0 we
can infer that L(s) = L(t). By Theorem 3 we can conclude that s≈st t.

Finally, we obtain the characterization of the strong trace metric.

Theorem 8 (Characterization of strong trace metric). For all s, t ∈ S we have dT (s, t) = DL(s, t).

Proof. By definition of trace metric (Definition 14) we have that

dT (s, t) = max

{
sup

Zs∈Res(s)
inf

Zt∈Res(t)
DT (Zs,Zt), sup

Zt∈Res(t)
inf

Zs∈Res(s)
DT (Zs,Zt)

}
.

By definition of L-distance over processes (Definition 28) we have that

DL(s, t) = H(Dd
L)(L(s),L(t))

= H(Dd
L)({>}∪{ΨZs |Zs ∈ Res(s)},{>}∪{ΨZt |Zt ∈ Res(t)})

= H(Dd
L)({ΨZs |Zs ∈ Res(s)},{ΨZt |Zt ∈ Res(t)})

= max
{

supZs∈Res(s) infZt∈Res(t) Dd
L(ΨZs ,ΨZt), supZt∈Res(t) infZs∈Res(s)D

d
L(ΨZs ,ΨZt)

}
where the third equality follows from the fact that by Definition 27 we have Dd

L(>,>)= 0 and Dd
L(>,Ψ)=

1 for any Ψ 6=>. Thus we have that >= argminΨ∈{>}∪{ΨZt |Zt∈Res(t)}D
d
L(>,Ψ) and symmetrically >=

argminΨ∈{>}∪{ΨZs |Zs∈Res(s)}D
d
L(Ψ,>). Moreover, for any Ψ 6= > we have that Dd

L(Ψ,Ψ′) ≤ Dd
L(Ψ,>)

for any Ψ′ ∈ {ΨZt |Zt ∈ Res(t)} and Dd
L(Ψ

′′,Ψ)≤Dd
L(>,Ψ) for any Ψ′′ ∈ {ΨZs |Zs ∈ Res(s)}.

Hence, to prove the thesis it is enough to show that

DT (Zs,Zt) = Dd
L(ΨZs ,ΨZt) for all Zs ∈ Res(s),Zt ∈ Res(t). (34)

Let Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt = corr−1

Zt
(t). Then by definition of

mimicking formula (Definition 24) we have

ΨZs =
⊕

α∈Tr(Cmax(zs))

Pr(Cmax(zs,α))Φα

Valentina Castiglioni & Simone Tini 29

where for each α ∈ Tr(Cmax(zs)) we have that Φα is the tracing formula for the trace α . Similarly,

ΨZt =
⊕

β∈Tr(Cmax(zt))

Pr(Cmax(zt ,β))Φβ

where for each β ∈ Tr(Cmax(zt)) we have that Φβ is the tracing formula for the trace β .
By definition of trace distance between resolutions (Definition 13) we have that

DT (Zs,Zt) = min
w∈W(TZs ,TZt)

∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w(α,β)dT (α,β) (35)

where, by definition of trace distance between traces (Definition 11), we have that dt(α,β) = 0 if α = β

and dt(α,β) = 1 otherwise.
Hence, by definition of tracing formula (Definition 23), it is immediate that for all α ∈Tr(Cmax(zs)),β ∈

Tr(Cmax(zt)) we have dT (α,β) = D t
L(Φα ,Φβ), thus giving

(35) = min
w∈W(TZs ,TZt)

∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w(α,β)D t
L(Φα ,Φβ). (36)

Let w̄ be an optimal matching for DT (Zs,Zt), namely

(36) = ∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w̄(α,β)D t
L(Φα ,Φβ). (37)

Then, by definition of matching and of T (Definition 12) we have that for any α ∈ Tr(Cmax(zs)),β ∈
Tr(Cmax(zt))

Pr(Cmax(zs,α)) = TZs(α) = ∑β∈Tr(Cmax(zt)) w̄(α,β)

Pr(Cmax(zt ,β)) = TZt (β) = ∑α∈Tr(Cmax(zs)) w̄(α,β).

Therefore we have obtained that w̄ is a matching for ΨZs and ΨZt . In particular we notice that w̄ is
actually an optimal matching for ΨZs ,ΨZt . This follows from the optimality of w̄ for TZs ,TZt . In fact
each matching for ΨZs ,ΨZt can be constructed from a matching for TZs ,TZt using the same technique
proposed above. Moreover, given w1 ∈W(TZs ,TZt) and w2 being the matching for Ψ1,Ψ2 built from
it, the reasoning above guarantees that

∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w1(α,β)dT (α,β) = ∑
α∈Tr(Cmax(zs))
β∈Tr(Cmax(zt))

w2(α,β)D t
L(Φα ,Φβ).

w̄ being optimal for DT implies w̃ being optimal for Dd
L. Hence by Definition 27 we have

Dd
L(ΨZs ,ΨZt) = ∑

α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w̄(α,β)D t
L(Φα ,Φβ).

From Equation (37) we infer DT (Zs,Zt) = Dd
L(ΨZs ,ΨZt) thus proving Equation (34) and concluding

the proof.

6.2 Lw-characterization of weak trace metric

The idea behind the definition of a metric on Lw is pretty much the same to the strong case. The main
difference is that the distance on Lw is a pseudometric whose kernel is given by Lw-equivalence.

30 Logical Characterization of Trace Metrics

Definition 29 (Distance on Lt
w). The function D t

Lw
: Lt

w×Lt
w→ [0,1] is defined over Lt

w as follows:

D t
Lw
(Φ1,Φ2) =

{
0 if Φ1 ≡w Φ2

1 otherwise.

Clearly, D t
Lw

is a pseudometric on Lt
w whose kernel is given by equivalence of trace formulae and

we can lift it to a pseudometric over Ld
w via the Kantorovich lifting functional.

Definition 30 (Distance on Ld
w). The function Dd

Lw
: Ld

w×Ld
w→ [0,1] is defined over Ld

w as follows:

Dd
Lw
(Ψ1,Ψ2) = K(D t

Lw
)(Ψ1,Ψ2).

Proposition 12. The function Dd
Lw

is a 1-bounded pseudometric over Ld
w.

Proof. The same arguments used in the proof of Proposition 9 apply, where in place of item 1 we simply
need to show that Dd

Lw
(Ψ,Ψ) = 0, which is immediate from the definition through the Kantorovich

pseudometric.

Theorem 9. The kernel of Dd
Lw

is Lw-equivalence of trace distribution formulae.

Proof. (⇒) Assume first that Dd
Lw
(Ψ1,Ψ2) = 0 for Ψ1 =

⊕
i∈I riΦi and Ψ2 =

⊕
j∈J r jΦ j. We aim to

show that this implies Ψ1 ≡†
w Ψ2. From the assumption, we have

0 = Dd
Lw
(
⊕

i∈I riΦi,
⊕

j∈J r jΦ j)

= minw∈W(Ψ1,Ψ2) ∑i∈I, j∈J w(Φi,Φ j)D t
Lw
(Φi,Φ j)

= ∑i∈I, j∈J w(Φi,Φ j)D t
Lw
(Φi,Φ j) (for w optimal matching).

Thus, for each i ∈ I and j ∈ J we can distinguish two cases:

• either w(Φi,Φ j) = 0,

• or w(Φi,Φ j)> 0, implying D t
Lw
(Φi,Φ j) = 0, which is equivalent to say that Φi ≡w Φ j by Defini-

tion 29.

For each i ∈ I, let Ji ⊆ J be the set of indexes ji for which w(Φi,Φ ji) > 0 and, symmetrically, for each
j ∈ J let I j ⊆ I be the set of indexes i j for which w(Φi j ,Φ j)> 0. So we have

Ψ1 =
⊕

i∈I riΦi

=
⊕

i∈I
(

∑ j∈J w(Φi,Φ j)
)
Φi (w ∈W(Ψ1,Ψ2))

≡†
w

⊕
i∈I
(

∑ ji∈Ji w(Φi,Φ j j)
)
Φi (by construction of each Ji)

≡†
w

⊕
i∈I, ji∈Ji

w(Φi,Φ ji)Φ ji (Φi ≡w Φ ji for each ji ∈ Ji)
≡†

w
⊕

i∈I, ji∈Ji, i′ji∈I ji
w(Φi′ji

,Φ ji)Φi′ji
(Φi′ji

≡w Φ ji for each i′ji ∈ I ji)
≡†

w
⊕

i j∈I j, j∈J w(Φi j ,Φ j)Φi j (all indexes j ∈ J are involved)
≡†

w
⊕

j∈J
(

∑i j∈I j w(Φi j ,Φ j)
)
Φ j (Φ j ≡w Φi j for each i j ∈ I j)

≡†
w

⊕
j∈J
(

∑i∈I w(Φi,Φ j)
)
Φ j (by construction of each I j)

=
⊕

j∈J r jΦ j (w ∈W(Ψ1,Ψ2))
= Ψ2.

Valentina Castiglioni & Simone Tini 31

(⇐). Assume that Ψ1 ≡†
w Ψ2. We aim to show that Dd

Lw
(Ψ1,Ψ2) = 0. Assume wlog. that Ψ1 =⊕

i∈I riΦi. By definition of ≡w (Definition 7) and definition of lifting of a relation (Definition 2), from
Ψ2 ≡†

w
⊕

i∈I riΦi we gather Ψ2 =
⊕

i∈I
ji∈Ji

r jiΦ ji with ∑ ji∈Ji r ji = ri and Φ ji ≡w Φi for all ji ∈ Ji, i∈ I. Then

Dd
Lw
(Ψ1,Ψ2) = Dd

Lw
(
⊕

i∈I riΦi,
⊕

i∈I, ji∈Ji
r jiΦ ji)

= minw∈W(Ψ1,Ψ2) ∑ i∈I, jh∈Jh
h∈I

w(Φi,Φ jh)D
t
Lw
(Φi,Φ jh)

≤ ∑ i∈I, jh∈Jh
h∈I

w̃(Φi,Φ jh)D
t
Lw
(Φi,Φ jh)

= ∑i∈I, ji∈Ji r jiD
t
Lw
(Φi,Φ ji)

= 0 (Φi ≡w Φ ji for each ji ∈ Ji and Def. 29)

where the inequality follows by observing that function w̃ defined by w̃(Φi,Φ jh) = r ji if h = i and
w̃(Φi,Φ jh) = 0 otherwise, is a matching in W(Ψ1,Ψ2).

Corollary 1. Z1,Z2 ∈ Res(S) are weak trace distribution equivalent iff Dd
Lw
(ΨZ1 ,ΨZ2) = 0.

Proof. (⇒) Assume first that Z1 and Z2 are weak trace distribution equivalent. Then from Theorem 4
we infer that ΨZ1 ≡w ΨZ2 . By Theorem 9 this implies Dd

Lw
(ΨZ1 ,ΨZ2) = 0.

(⇐) Assume now that Dd
Lw
(ΨZ1 ,ΨZ2) = 0. Then from Theorem 9 we infer that ΨZ1 ≡w ΨZ2 . By

Theorem 4 this implies that Z1 and Z2 are weak trace distribution equivalent.

By the Hausdorff functional we lift the pseudometric Dd
Lw

to a pseudometric over processes.

Definition 31. The Lw-distance over processes DLw : S×S→ [0,1] is defined, for all s, t ∈ S, by

DLw(s, t) = H(Dd
Lw
)(Lw(s),Lw(t)).

Proposition 13. The mapping DLw is a 1-bounded pseudometric over S.

Proof. The same arguments used in the proof of Proposition 10 apply.

Proposition 14. Let s ∈ S. The set Lw(s) is a closed subset of Lw wrt. the topology induced by Dd
Lw

.

Proof. Since (Ld
w,D

d
Lw
) is a pseudometric space (Proposition 12 and Theorem 9), to prove the thesis we

need to show that the quotient space Lw(s)/≡w is a closed subset of Lw/≡w with respect to the topology
induced by Dd

Lw
(in fact (Ld

w/≡w
,Dd

Lw
) is a metric space). From Remark 2 we have that Ld

w/≡w
= Ld

and Lw(s)/≡w = L(s). Moreover, we have that Dd
Lw
|Ld

w/≡w
= Dd

L. Hence, the same arguments used in the
proof of Proposition 11 allow us to prove that Lw(s)/≡w is a closed subset of Lw/≡w wrt. the topology
induced by Dd

Lw
. This gives the result also for Lw(s) wrt to Lw and Dd

Lw
.

Theorem 10. The kernel of DLw is weak trace equivalence.

Proof. (⇒) Assume that s≈wt t. We aim to show that DLw(s, t) = 0. By Theorem 5 we have that s≈wt t
implies that Lw(s)≡†

w Lw(t). Since the kernel of Dd
Lw

is given by ≡†
w (Theorem 9), we can infer

DLw(s, t) = H(D t
Lw
)(Lw(s),Lw(t)) = 0.

(⇐) Assume now that DLw(s, t) = 0. We aim to show that this implies that s ≈wt t. Since (i) Lw(s) and
Lw(t) are closed by Proposition 14, (ii) DLw is a pseudometric by Proposition 13 and (iii) the kernel of
Dd

Lw
is≡†

w by Theorem 9, from DLw(s, t) = 0 we can infer Lw(s)≡†
w Lw(t). Then, by Theorem 5 we can

conclude s≈wt t.

32 Logical Characterization of Trace Metrics

Finally, we obtain the characterization of the weak trace metric.
Theorem 11 (Characterization of weak trace metric). For all s, t ∈ S we have dw

T (s, t) = DLw(s, t).

Proof. The same arguments used in the proof of Thm 8 apply.

7 From boolean to real semantics

In this section we focus on L and we exploit the distance between formulae to define a real valued
semantics for it, namely given a process s we assign to each formula a value in [0,1] expressing the
probability that s satisfies it. Then we show that our logical characterization of trace metric can be
restated in terms of the general schema dT (s, t) = sup

Ψ∈Ld
| [Ψ](s)− [Ψ](t) | where [Ψ](s) denotes the value

of the formula Ψ at process s, accordingly to the new real valued semantics. We remark that although,
due to space restrictions, we present only the result for L, the technique we propose would lead to the
same results when applied to Lw.

First of all, we recall the notion of distance function, namely the distance between a point and a set.
Definition 32 (Distance function). Let L′ ⊆ Ld. Given any Ψ ∈ Ld we denote by Dd

L(Ψ,L′) the distance
between Ψ and the set L′ defined by Dd

L(Ψ,L′) = inf
Ψ′∈L′

Dd
L(Ψ,Ψ′).

Then we obtain the following characterization of the Hausdorff distance.
Proposition 15. Let L1,L2 ⊆ Ld. Then it holds that H(Dd

L)(L1,L2) = sup
Ψ∈Ld
|Dd

L(Ψ,L1)−Dd
L(Ψ,L2)|.

Proof. It is clear that

H(Dd
L)(L1,L2) = max

{
sup

Ψ1∈L1

Dd
L(Ψ1,L2), sup

Ψ2∈L2

Dd
L(Ψ2,L1)

}
. (38)

Firstly we show that
H(Dd

L)(L1,L2)≤ sup
Ψ∈Ld
|Dd

L(Ψ,L1)−Dd
L(Ψ,L2)|. (39)

Without loss of generality, we can assume that H(Dd
L)(L1,L2) = supΨ1∈L1

Dd
L(Ψ1,L2). Then we have

supΨ1∈L1
Dd

L(Ψ1,L2) = supΨ1∈L1
|Dd

L(Ψ1,L2)−Dd
L(Ψ1,L1)|

≤ supΨ∈Ld |Dd
L(Ψ,L2)−Dd

L(Ψ,L1)|

from which Equation (39) holds.
Next, we aim to show the converse inequality, namely

H(Dd
L)(L1,L2)≥ sup

Ψ∈Ld
|Dd

L(Ψ,L1)−Dd
L(Ψ,L2)|. (40)

To this aim, we show that

for each Ψ ∈ Ld it holds |Dd
L(Ψ,L1)−Dd

L(Ψ,L2)| ≤H(Dd
L)(L1,L2). (41)

• Assume Ψ ∈ L1. Then Dd
L(Ψ,L1) = 0 so that |Dd

L(Ψ,L1)−Dd
L(Ψ,L2)|= Dd

L(Ψ,L2). Moreover

Dd
L(Ψ,L2)≤ sup

Ψ1∈L1

Dd
L(Ψ1,L2)≤H(Dd

L)(L1,L2)

and Equation (41) follows in this case.

Valentina Castiglioni & Simone Tini 33

• The case of Ψ ∈ L2 is analogous and therefore Equation (41) follows also in this case.

• Finally, assume that Ψ 6∈ L1∪L2. Without loss of generality, we can assume that Dd
L(Ψ,L1) ≥

Dd
L(Ψ,L2). By definition of infimum it holds that for each ε > 0 there is a formula Ψε ∈ L2 s.t.

Dd
L(Ψ,Ψε)< Dd

L(Ψ,L2)+ ε. (42)

Analogously, for each ε ′ > 0 and for each Ψ2 ∈ L2 there is a Ψε ′ ∈ L1 s.t.

Dd
L(Ψ2,Ψε ′)< Dd

L(Ψ2,L1)+ ε
′. (43)

Let us fix ε,ε ′ > 0. Then let Ψε ∈ L2 be the formula realizing Equation (42), with respect to Ψ,
and let Ψ̃ε ′ be the formula in L1 realizing Equation (42), with respect to this Ψε . Therefore, we
have

|Dd
L(Ψ,L1)−Dd

L(Ψ,L2)|
= Dd

L(Ψ,L1)−Dd
L(Ψ,L2)

< Dd
L(Ψ,L1)−Dd

L(Ψ,Ψε)+ ε (by Equation (42))
= infΨ1∈L1 Dd

L(Ψ,Ψ1)−Dd
L(Ψ,Ψε)+ ε (by Definition 32)

< Dd
L(Ψ,Ψ̃ε ′)−Dd

L(Ψ,Ψε)+ ε

≤ Dd
L(Ψ,Ψε)+Dd

L(Ψε ,Ψ̃ε ′)−Dd
L(Ψ,Ψε)+ ε (by triangle inequality)

= Dd
L(Ψε ,Ψ̃ε ′)+ ε

< Dd
L(Ψε ,L1)+ ε ′+ ε (by Equation (43))

≤ supΨ2∈L2
Dd

L(Ψ2,L1)+ ε ′+ ε

≤ H(Dd
L)(L1,L2)+ ε ′+ ε (by Equation (38)).

Summarizing, we have obtained that

|Dd
L(Ψ,L1)−Dd

L(Ψ,L2)|< H(Dd
L)(L1,L2)+ ε

′+ ε

and since this inequality holds for each ε and ε ′, we can conclude that Equation (41) holds.

Equation (39) and Equation (40) taken together prove the thesis.

To define the real-valued semantics of Ld we exploit the distance Dd
L. Informally, to quantify how

much the formula Ψ is satisfied by process s we evaluate first how far Ψ is from being satisfied by s.
This corresponds to the minimal distance between Ψ and a formula satisfied by s, namely to Dd

L(Ψ,L(s)).
Then we simply notice that, as our distances are all 1-bounded, being Dd

L(Ψ,L(s)) far from s is equivalent
to be 1−Dd

L(Ψ,L(s)) close to it. Thus we assign to Ψ the real value 1−Dd
L(Ψ,L(s)) in s.

Definition 33 (Real-valued semantics of Ld). We define the real-valued semantics of Ld as the function
[]() : Ld×S→ [0,1] defined for all Ψ ∈ Ld and s ∈ S as [Ψ](s) = 1−Dd

L(Ψ,L(s)).
We can restate our characterization theorem (Theorem 3) as a probabilistic Ld-model checking prob-

lem.

Theorem 12 (Characterization of strong trace metric II). For all s, t ∈ S we have

dT (s, t) = sup
Ψ∈Ld

| [Ψ](s)− [Ψ](t) | .

Proof. From Theorem 3 we have dT (s, t) = DL(s, t). Hence the thesis is equivalent to prove

DL(s, t) = sup
Ψ∈Ld

| [Ψ](s)− [Ψ](t) | .

34 Logical Characterization of Trace Metrics

We have

DL(s, t) = H(Dd
L)(L(s),L(t)) (by Definition 28)

= supΨ∈Ld |Dd
L(Ψ,L(s))−Dd

L(Ψ,L(t)) | (by Proposition 15)
= supΨ∈Ld |Dd

L(Ψ,L(s))−Dd
L(Ψ,L(t))+1−1 |

= supΨ∈Ld | 1−Dd
L(Ψ,L(t))−

(
1−Dd

L(Ψ,L(s))
)
|

= supΨ∈Ld | [Ψ](t)− [Ψ](s) | (by Definition33).

8 Concluding remarks

We have provided a logical characterization of the strong and weak variants of trace metric on finite
processes in the PTS model. Our results are based on the definition of a distance over the two-sorted
boolean logics L and Lw, which we have proved to characterize resp. strong and weak probabilistic trace
equivalence by exploiting the notion of mimicking formula of a resolution.

Our distance is a 1-bounded pseudometric that quantifies the syntactic disparities of the formulae and
we have proved that the trace metric corresponds to the distance between the sets of formulae satisfied
by the two processes. This approach, already successfully applied in [8] to the characterization of the
bisimilarity metric, is not standard. Logical characterizations of the trace metrics have been obtained
in terms of the probabilistic L-model checking problem, where L is the class of logical properties of
interest, [1, 3, 9]. However we have proved that our approach can be exploited to regain classical one:
by means of our distance between formulae we have defined a real-valued semantics for L, namely a
probabilistic model checking of a formula in a process, and then we have proved that the trace metric
constitutes the least upper bound to the error that can be observed in the verification of an L formula.

Another interesting feature of our approach is its generality, since it can be easily applied to some
variants of the trace equivalence and trace metric. In [4, 26] the authors distinguish between resolutions
obtained via deterministic schedulers and the ones obtained via randomized schedulers. The only differ-
ence between the two classes is in the evaluation of the probability weights: in deterministic resolutions,
which are the ones we have considered in this paper, each possible resolution of nondeterminism is con-
sidered singularly and thus the target probability distributions of their transitions are the same as in the
considered process. In randomized resolutions, internal nondeterminism is solved by assigning a proba-
bility weight to each choice and thus the target distributions are obtained from the convex combination
of the target distributions of the considered process. Since the definition of the mimicking formulae de-
pends solely on the values of the probability weights in the resolutions and not on how these weights are
evaluated, our characterization can be applied also to the case of trace equivalences and metrics defined
in terms of randomized resolutions.

As a first step in the future development of our work, we aim to extend our results to the trace
equivalence defined in [4] which, differently from the equivalence of [26] considered in this paper, is
compositional wrt. the parallel composition operator. Roughly speaking, in [4] for each given trace it
is checked whether the resolutions of two processes assign the same probability it, whereas in [26] for
a chosen resolution of the first process we check whether there is a resolution for the second process
that assigns the same probability to all traces. Furthermore, no trace metric has been defined yet for the
equivalence in [4]. Our idea is then firstly to define such a trace metric and secondly to simplify the logic
L by substituting the trace distribution formulae with a simple test on the execution probability of a trace,
with an operator similar to the probabilistic operator in [25]. By applying our approach to the new logic
we will obtain the characterization of the trace equivalence and metric.

Valentina Castiglioni & Simone Tini 35

Then, we will study metrics and logical characterizations for the testing equivalences defined in [4].
Finally, in [3] a sequence of Kantorovich bisimilarity-like metrics converging to the trace metric on

MCs is provided. Hence we aim to combine our characterization results in [8] with the ones in this paper
in order to see if a similar result of convergence can be obtained also with our technique on PTSs.

References

[1] Luca de Alfaro, Marco Faella & Mariëlle Stoelinga (2009): Linear and Branching System Metrics. IEEE
Trans. Software Eng. 35(2), pp. 258–273, doi:10.1109/TSE.2008.106.

[2] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman & Mariëlle Stoelinga (2008): Game Refinement Rela-
tions and Metrics. Logical Methods in Computer Science 4(3).

[3] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen & Radu Mardare (2015): Converging from Branching to
Linear Metrics on Markov Chains. In: Proceedings of ICTAC 2015, pp. 349–367, doi:10.1007/978-3-319-
25150-9 21.

[4] Marco Bernardo, Rocco De Nicola & Michele Loreti (2014): Revisiting Trace and Testing Equiva-
lences for Nondeterministic and Probabilistic Processes. Logical Methods in Computer Science 10(1),
doi:10.2168/LMCS-10(1 : 16)2014.

[5] Franck van Breugel (2005): A Behavioural Pseudometric for Metric Labelled Transition Systems. In: Pro-
ceedings of CONCUR 2005, pp. 141–155, doi:10.1007/11539452 14.

[6] Franck van Breugel & James Worrell (2001): Towards Quantitative Verification of Probabilistic Transition
Systems. In: Proceedings of ICALP, pp. 421–432, doi:10.1007/3-540-48224-5 35.

[7] Franck van Breugel & James Worrell (2005): A behavioural pseudometric for probabilistic transition sys-
tems. Theor. Comput. Sci. 331(1), pp. 115–142.

[8] Valentina Castiglioni, Daniel Gebler & Simone Tini (2016): Logical Characterization of Bisimulation
Metrics. In: Proceedings of QAPL 2016, Electronic Proceedings in Theoretical Computer Science,
doi:10.4204/EPTCS.227.4.

[9] Przemyslaw Daca, Thomas A. Henzinger, Jan Kretı́nský & Tatjana Petrov (2016): Linear
Distances between Markov Chains. In: Proceedings of CONCUR 2016, pp. 20:1–20:15,
doi:10.4230/LIPIcs.CONCUR.2016.20.

[10] Yuxin Deng, Tom Chothia, Catuscia Palamidessi & Jun Pang (2006): Metrics for Action-labelled Quan-
titative Transition Systems. Electronic Notes in Theoretical Computer Science 153(2), pp. 79–96,
doi:10.1016/j.entcs.2005.10.033.

[11] Yuxin Deng & Wenjie Du (2011): Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisim-
ulation. CoRR abs/1103.4577.

[12] Josee Desharnais, Vineet Gupta, Radha Jagadeesan & Prakash Panangaden (2004): Metrics for labelled
Markov processes. Theoretical Computer Science 318(3), pp. 323–354, doi:10.1016/j.tcs.2003.09.013.

[13] Josée Desharnais, Radha Jagadeesan, Vineet Gupta & Prakash Panangaden (2002): The Metric Analogue of
Weak Bisimulation for Probabilistic Processes. In: Proc. LICS 2002, pp. 413–422.

[14] Wenjie Du, Yuxin Deng & Daniel Gebler (2016): Behavioural Pseudometrics for Nondeterministic Proba-
bilistic Systems. In: Proceedings of SETTA 2016, pp. 67–84, doi:10.1007/978-3-319-47677-3 5.

[15] D. Gebler, K. G. Larsen & S. Tini (2016): Compositional bisimulation metric reasoning with Probabilistic
Process Calculi. Logical Methods in Computer Science 12(4).

[16] Daniel Gebler & Simone Tini (2015): SOS Specifications of Probabilistic Systems by Uniformly Continuous
Operators. In: Proc. CONCUR 2015, pp. 155–168.

[17] Alessandro Giacalone, Chi-Chang Jou & Scott A. Smolka (1990): Algebraic Reasoning for Probabilistic
Concurrent Systems. In: Proc. IFIP Work, Conf. on Programming, Concepts and Methods, pp. 443–458.

http://dx.doi.org/10.1109/TSE.2008.106
http://dx.doi.org/10.1007/978-3-319-25150-9_21
http://dx.doi.org/10.1007/978-3-319-25150-9_21
http://dx.doi.org/10.2168/LMCS-$10(1:16)2014$
http://dx.doi.org/$10.1007/11539452_14$
http://dx.doi.org/$10.1007/3$-540-48224-5_35
http://dx.doi.org/10.4204/EPTCS.227.4
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.20
http://dx.doi.org/10.1016/j.entcs.$2005.10.033$
http://dx.doi.org/10.1016/j.tcs.$2003.09.013$
http://dx.doi.org/$10.1007/978$-3-319-47677-3_5

36 Logical Characterization of Trace Metrics

[18] Hans Hansson & Bengt Jonsson (1994): A logic for reasoning about time and reliability. Formal Aspects of
Computing 6(5), pp. 512–535, doi:10.1007/BF01211866.

[19] Matthew Hennessy & Robin Milner (1985): Algebraic laws for nondeterminism and concurrency. J. As-
soc. Comput. Mach. 32, pp. 137–161.

[20] Holger Hermanns, Augusto Parma, Roberto Segala, Björn Wachter & Lijun Zhang (2011): Probabilistic
Logical Characterization. Information and Computation 209(2), pp. 154–172, doi:10.1016/j.ic.2010.11.024.

[21] Leonid V. Kantorovich (1942): On the Transfer of Masses. Original article in Russian, translation in Man-
agement Science, 5 : 1−4(1959).

[22] Robert M. Keller (1976): Formal Verification of Parallel Programs. Commun. ACM 19(7), pp. 371–384,
doi:10.1145/360248.360251.

[23] Marta Z. Kwiatkowska & Gethin Norman (1996): Probabilistic Metric Semantics for a Simple Language
with Recursion. In: Proc. MFCS’96, pp. 419–430.

[24] Kim G. Larsen, Radu Mardare & Prakash Panangaden (2012): Taking It to the Limit: Approximate Reasoning
for Markov Processes. In: Proc. MFCS 2012, pp. 681–692.

[25] Augusto Parma & Roberto Segala (2007): Logical Characterizations of Bisimulations for Discrete Proba-
bilistic Systems. In: Proceedings of FoSSaCS 2007, pp. 287–301, doi:10.1007/978-3-540-71389-0 21.

[26] Roberto Segala (1995): A Compositional Trace-Based Semantics for Probabilistic Automata. In: Proceedings
of CONCUR ’95, pp. 234–248, doi:10.1007/3-540-60218-6 17.

[27] Roberto Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D.
thesis, MIT.

[28] Lin Song, Yuxin Deng & Xiaojuan Cai (2007): Towards Automatic Measurement of Probabilistic Processes.
In: Proceedings of QSIC 2007, pp. 50–59, doi:10.1109/QSIC.2007.65.

[29] William J. Stewart (1994): Introduction to the Numerical Solution of Markov Chains. Princeton University
Press.

http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1016/j.ic.$2010.11.024$
http://dx.doi.org/$10.1145/360248.360251$
http://dx.doi.org/$10.1007/978$-3-540-71389-0_21
http://dx.doi.org/10.1007/3-540-60218-6_17
http://dx.doi.org/10.1109/QSIC.2007.65

Submitted to:
QAPL 2017

c© A. Vandin
This work is licensed under the
Creative Commons Attribution License.

Language-based abstractions for dynamical systems

Andrea Vandin
IMT School for Advanced Studies Lucca, Lucca, Italy

andrea.vandin@imtlucca.it

Ordinary differential equations (ODEs) are the primary means to model dynamical systems in a wide
range of natural and engineering sciences. When the complexity of the considered system is high, the
number of equations required limits our capability of performing effective analysis. This has motivated
a large body of research, across many disciplines, into abstraction techniques that provide smaller ODE
systems preserving the original dynamics in some appropriate sense (e.g., [2, 14, 15, 5]).

Our own line of research [10, 18, 7, 9, 20, 8, 6, 13] consists of a computer science perspective to
this problem, borrowing ideas from the concurrency theory community. We recast the ODE reduction
problem to that of finding an appropriate equivalence relation over ODE variables, akin to classical
models of computation based on labelled transition systems. We studied such “differential equivalences”
for two basic intermediate languages, trading expressivity for efficiency:

i) IDOL (Intermediate Drift-Oriented Language) [9] covers a general class of non-linear ODEs with
derivatives containing polynomials, rationals, minima/maxima, and absolute values. This is suf-
ficient, e.g., to capture the existing ODE semantics of stochastic process algebras [13, 4]. The
largest equivalences of IDOL terms are computed using a symbolic partition-refinement algorithm
that exploits an encoding into a satisfiability modulo theories (SMT) problem;

ii) Reaction networks [6, 8], a slight generalization of chemical reaction networks, characterise ODEs
with polynomial derivatives. In this case, the partition refinement is based on Paige and Tarjan’s
seminal proposal [16], giving an efficient algorithm that runs in polynomial time.

A tutorial-like presentation unifying the two approaches can be found in [20], while [7, 18] address
the more general problem of computing all differential equivalences of a model. Our framework for
ODE reduction has been implemented in the tool ERODE [10] (http://sysma.imtlucca.it/tools/
erode/), allowing us to provide evidence of effective reductions in realistic models from the literature.

We remark that our techniques consider exact aggregations. In some cases, however, one might be
interested in more permissive, approximate, notions that do not discriminate ODE variables with nearby
trajectories in practice (e.g., [17, 1, 3, 11, 19, 12]). In an ongoing research we are developing approximate
variants of our differential equivalences, aiming at maintaining computational tractability, and certified
error bounds that do not grow fast with time.

References
[1] Alessandro Aldini, Mario Bravetti & Roberto Gorrieri (2004): A process-algebraic approach for the analysis

of probabilistic noninterference. Journal of Computer Security 12(2), pp. 191–245.
[2] Masanao Aoki (1968): Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control

13(3), pp. 246–253, doi:10.1109/TAC.1968.1098900.
[3] Franck van Breugel & James Worrell (2006): Approximating and computing behavioural distances in prob-

abilistic transition systems. Theoretical Computer Science 360(1–3), pp. 373–385.
[4] Luca Cardelli (2008): On process rate semantics. Theoretical Computer Science 391(3), pp. 190–215.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://sysma.imtlucca.it/tools/erode/
http://sysma.imtlucca.it/tools/erode/
http://dx.doi.org/10.1109/TAC.1968.1098900

2 Language-based abstractions for dynamical systems

[5] Luca Cardelli, Attila Csikász-Nagy, Neil Dalchau, Mirco Tribastone & Max Tschaikowski (2016): Noise
Reduction in Complex Biological Switches. Scientific Reports 6, p. 20214.

[6] Luca Cardelli, Mirco Tribastone, Max Tschaikowski & Andrea Vandin (2015): Forward and
Backward Bisimulations for Chemical Reaction Networks. In: CONCUR 2015, pp. 226–239,
doi:10.4230/LIPIcs.CONCUR.2015.226.

[7] Luca Cardelli, Mirco Tribastone, Max Tschaikowski & Andrea Vandin (2016): Comparing Chemi-
cal Reaction Networks: A Categorical and Algorithmic Perspective. In: LICS 2016, pp. 485–494,
doi:10.1145/2933575.2935318.

[8] Luca Cardelli, Mirco Tribastone, Max Tschaikowski & Andrea Vandin (2016): Efficient Syntax-Driven
Lumping of Differential Equations. In: TACAS 2016, pp. 93–111, doi:10.1007/978-3-662-49674-9 6.

[9] Luca Cardelli, Mirco Tribastone, Max Tschaikowski & Andrea Vandin (2016): Symbolic computation of
differential equivalences. In: POPL 2016, pp. 137–150, doi:10.1145/2837614.2837649.

[10] Luca Cardelli, Mirco Tribastone, Max Tschaikowski & Andrea Vandin (2017): ERODE: A Tool for the
Evaluation and Reduction of Ordinary Differential Equations. In: TACAS 2017. To appear.

[11] Vineet Gupta, Radha Jagadeesan & Prakash Panangaden (2006): Approximate reasoning for real-time prob-
abilistic processes. LMCS 2(1), doi:http://dx.doi.org/10.2168/LMCS-2(1:4)2006.

[12] Giulio Iacobelli & Mirco Tribastone (2013): Lumpability of fluid models with heterogeneous agent types. In:
DSN, pp. 1–11.

[13] Giulio Iacobelli, Mirco Tribastone & Andrea Vandin (2015): Differential Bisimulation for a Markovian Pro-
cess Algebra. In: MFCS 2015, pp. 293–306, doi:10.1007/978-3-662-48057-1 23.

[14] Yoh Iwasa, Viggo Andreasen & Simon Levin (1987): Aggregation in model ecosystems. I. Perfect aggrega-
tion. Ecological Modelling 37(3-4), pp. 287–302.

[15] Miles S. Okino & Michael L. Mavrovouniotis (1998): Simplification of Mathematical Models of Chemical
Reaction Systems. Chemical Reviews 2(98), pp. 391–408.

[16] Robert Paige & Robert Tarjan (1987): Three Partition Refinement Algorithms. SIAM Journal on Computing
16(6), pp. 973–989.

[17] Alessandra Di Pierro, Chris Hankin & Herbert Wiklicky (2003): Quantitative Relations and Approxi-
mate Process Equivalences. In: CONCUR, pp. 498–512. Available at http://dx.doi.org/10.1007/
978-3-540-45187-7_33.

[18] Stefano Tognazzi, Mirco Tribastone, Max Tschaikowski & Andrea Vandin (2017): EGAC: A Genetic Algo-
rithm to Compare Chemical Reaction Networks. In: GECCO 2017. To appear.

[19] Max Tschaikowski & Mirco Tribastone (2016): Approximate Reduction of Heterogenous Nonlinear Models
With Differential Hulls. IEEE Trans. Automat. Contr. 61(4), pp. 1099–1104.

[20] Andrea Vandin & Mirco Tribastone (2016): Quantitative Abstractions for Collective Adaptive Systems. In:
SFM 2016, Bertinoro Summer School, pp. 202–232, doi:10.1007/978-3-319-34096-8 7.

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.226
http://dx.doi.org/10.1145/2933575.2935318
http://dx.doi.org/10.1007/978-3-662-49674-9_6
http://dx.doi.org/10.1145/2837614.2837649
http://dx.doi.org/http://dx.doi.org/10.2168/LMCS-2(1:4)2006
http://dx.doi.org/10.1007/978-3-662-48057-1_23
http://dx.doi.org/10.1007/978-3-540-45187-7_33
http://dx.doi.org/10.1007/978-3-540-45187-7_33
http://dx.doi.org/10.1007/978-3-319-34096-8_7

Submitted to:
QAPL 2017

c© D. Latella, M. Massink
This work is licensed under the
Creative Commons Attribution License.

Design and Optimisation of the FlyFast Front-end for
Attribute-based Coordination

Diego Latella Mieke Massink
Consiglio Nazionale delle Ricerche

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

{Diego.Latella, Mieke.Massink}@cnr.it

Collective Adaptive Systems (CAS) consist of a large number of interacting objects. The design
of such systems requires scalable analysis tools and methods, which have necessarily to rely on
some form of approximation of the system’s actual behaviour. Promising techniques are those based
on mean-field approximation. The FlyFast model-checker uses an on-the-fly algorithm for bounded
PCTL model-checking of selected individual(s) in the context of very large populations whose global
behaviour is approximated using deterministic limit mean-field techniques. Recently, a front-end
for FlyFast has been proposed which provides a modelling language, PiFF in the sequel, for the
Predicate-based Interaction for FlyFast. In this paper we present details of PiFF design and an
approach to state-space reduction based on probabilistic bisimulation for inhomogeneous DTMCs.

1 Introduction

Collective Adaptive Systems (CAS) consist of a large number of entities with decentralised control and
varying degrees of complex autonomous behaviour. They form the basis of many modern smart city
critical infrastructures. Consequently, their design requires support from formal methods and scalable
automatic tools based on solid mathematical foundations. In [28, 26], Latella et al. presented a scal-
able mean-field model-checking procedure for verifying bounded Probabilistic Computation Tree Logic
(PCTL, [18]) properties of an individual1 in the context of a system consisting of a large number of
interacting objects. The model-checking procedure is implemented in the tool FlyFast2. The procedure
performs on-the-fly, mean-field, approximated model-checking based on the idea of fast simulation, as
introduced in [29]. More specifically, the behaviour of a generic agent with S states in a system with a
large number N of instances of the agent at given step (i.e. time) t is approximated by K(µ(t)) where
K(m) is the S×S probability transition matrix of an (inhomogeneous) DTMC and µ(t) is a vector of size
S approximating the mean behaviour of (the rest of) the system at t; each element of µ(t) is associated
with a distinct state of the agent, say C, and gives an approximation of the fraction of instances of the
agent that are in state C in the global system, at step t. Note that such an approximation is a deterministic
one, i.e. µ is a function of the step t (the exact behaviour of the rest of the system would instead be a
large DTMC in turn); note furthermore, that the above transition matrix does not depend on N [28, 26].

Recently, modelling and programming languages have been proposed specifically for autonomic
computing systems and CAS [11, 5]. Typically, in such frameworks, a system is composed of a set of
independent components where a component is a process equipped also with a set of attributes describ-
ing features of the component. The attributes of a component can be updated during its execution so

1The technique can be applied also to a finite selection of individuals; in addition, systems with several distinct types of
individuals can be dealt with; for the sake of simplicity, in the present paper we consider systems with many instances of a
single individual only and we focus in the model-checking a single individual in such a context.

2http://j-sam.sourceforge.net/

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Designing Attribute-based FlyFast

that the association between attribute names and attribute values is maintained in the dynamic store of
the component. Attributes can be used in predicates appearing in language constructs for component
interaction. The latter is thus typically modelled using predicate-based output/input multicast, originally
proposed in [25], and playing a fundamental role in the interaction schemes of languages like SCEL [11]
and CARMA [5]. In fact, predicate-based communication can be used by components to dynamically
organise themselves into ensembles and as a means to dynamically select partners for interaction. Fur-
thermore, it provides a way for representing component features, like for instance component location in
space, which are fundamental for systems distributed in space, such as CAS [30].

In [8] we proposed a front-end modelling language for FlyFast that provides constructs for dealing
with components and predicate-based interaction; in the sequel, the language—which has been inspired
by CARMA— will be referred to as PiFF, which stands for for Predicate-based Interaction for FlyFast.
Components interact via predicate-based communication. Each component consists of a behaviour, mod-
elled as a DTMC-like agent, like in FlyFast, and a set of attributes. The attribute name-value correspon-
dence is kept in the current store of the component. Actions are predicate based multi-cast output and
input primitives; predicates are defined over attributes. Associated to each action there is also an (atomic)
probabilistic store-update. For instance, assume components have an attribute named loc which takes val-
ues in the set of points of a space, thus recording the current location of the component. The following
action models a multi-cast via channel α to all components in the same location as the sender, making
it change location randomly: α∗[loc = my.loc]〈〉Jump. Here Jump is assumed to randomly update the
store and, in particular attribute loc. The computational model is clock-synchronous, as in FlyFast, but
at the component level. In addition, each component is equipped with a local outbox. The effect of an
output action α∗[πr]〈〉σ is to deliver output label α〈〉 to the local outbox, together with the predicate πr,
which (the store of) the receiver components will be required to satisfy, as well as the current store of
the component executing the action; the current store is updated according to update σ . Note that output
actions are non-blocking and that successive output actions of the same component overwrite its outbox.
An input action α∗[πs]()σ by a component will be executed with a probability which is proportional to
the fraction of all those components whose outboxes currently contain the label α〈〉, a predicate πr which
is satisfied by the component, and a store which satisfies in turn predicate πs. If such a fraction is zero,
then the input action will not take place (input is blocking), otherwise the action takes place, the store of
the component is updated via σ , and its outbox cleared.

Related Work CAS are typically large systems, so that the formal analysis of models for such systems
hits invariantly the state-space explosion problem. In order to mitigate this problem, the so called ‘on-
the-fly’ paradigm is often adopted (see e.g. [9, 4, 20, 15]).

In the context of probabilistic model-checking several on-the-fly approaches have been proposed,
among which [12], [27] and [17]. In [12], a probabilistic model-checker is shown for the time bounded
fragment of PCTL. An on-the-fly approach for full PCTL model-checking is proposed in [27] where,
actually, a specific instantiation is presented of an algorithm which is parametric with respect to the
specific probabilistic processes modelling language and logic, and their specific semantics. Finally,
in [17] an on-the-fly approach is used for detecting a maximal relevant search depth in an infinite state
space and then a global model-checking approach is used for verifying bounded Continuous Stochastic
Logic (CSL) [1, 2] formulas in a continuous time setting on the selected subset of states.

An on-the-fly approach by itself however, does not solve the challenging scalability problems that
arise in truly large parallel systems, such as CAS. To address this type of scalability challenges in prob-
abilistic model-checking, recently, several approaches have been proposed. In [19, 16] approximate

D. Latella, M. Massink 3

probabilistic model-checking is introduced. This is a form of statistical model-checking that consists in
the generation of random executions of an a priori established maximal length [24]. On each execution
the property of interest is checked and statistics are performed over the outcomes. The number of execu-
tions required for a reliable result depends on the maximal error-margin of interest. The approach relies
on the analysis of individual execution traces rather than a full state space exploration and is therefore
memory-efficient. However, the number of execution traces that may be required to reach a desired ac-
curacy may be large and therefore time-consuming. The approach works for general models, i.e. models
where stochastic behaviour can also be non Markovian and that do not necessarily model populations of
similar objects. On the other hand, the approach is not independent from the number of objects involved.
As recalled above, in [26] a scalable model-checking algorithm is presented that is based on mean-field
approximation, for the verification of time bounded PCTL properties of an individual in the context of
a system consisting of a large number of interacting objects. Correctness of the algorithm with respect
to exact probabilistic model-checking has been proven in [26] as well. Also this algorithm is actually an
instantiation of the above mentioned parametric algorithm for (exact) probabilistic model-checking [27],
but the algorithm is instantiated on (time bounded PCTL and) the approximate, mean-field, semantics of
a population process modelling language. It is worth pointing out that FlyFast allows users to perform
simulations of their system models and to analyse the latter using their exact probabilistic semantics and
exact PCTL model-checking. In addition, the tool provides approximate model-checking for bounded
PCTL, using the model semantics based on mean-field.

The work of Latella et al. [26] is based on mean-field approximation in the discrete time setting;
approximated mean-field model-checking in the continuous time setting has been presented in the lit-
erature as well, where the deterministic approximation of the global system behaviour is formalised as
an initial value problem using a set of differential equations. Preliminary ideas on the exploitation of
mean-field convergence in continuous time for model-checking were informally sketched in [22], but
no model-checking algorithms were presented. Follow-up work on the above mentioned approach can
be found in [23] which relies on earlier results on fluid model-checking by Bortolussi and Hillston [6],
later published in [7], where a global CSL model-checking procedure is proposed for the verification
of properties of a selection of individuals in a population, which relies on fast simulation results. This
work is perhaps closest related to [26, 28]; however their procedure exploits mean-field convergence
and fast simulation [10, 14] in a continuous time setting—using a set of differential equations—rather
than in a discrete time setting—where an inductive definition is used. Moreover, that approach is based
on an interleaving model of computation, rather than a clock-synchronous one; furthermore, a global
model-checking approach, rather than an on-the-fly approach is adopted; it is also worth noting that the
treatment of nested formulas, whose truth value may change over time, turns out to be much more diffi-
cult in the interleaving, continuous time, global model-checking approach than in the clock-synchronous,
discrete time, on-the-fly one.

PiFF has been originally proposed in [8], where the complete formal, exact probabilistic, semantics
of the language have been defined. The semantics definition consists of three transition rules—one for
transitions associated with output actions, one for those associated with input actions, and one for transi-
tions to be fired with residual probability. The rules induce a transition relation among component states
and compute the relevant probabilities. From the component transition relation, a component one-step
transition probability matrix is derived, the elements of which may depend on the fractions of the compo-
nents in the system which are in a certain state. The system-wide one-step transition probability matrix is
obtained by product—due to independence assumptions—using the above mentioned component proba-
bility matrix and the actual fractions in the current system global state. In [8] a translation of PiFF to the
model specification language of FlyFast has also been presented which makes PiFF an additional front-

4 Designing Attribute-based FlyFast

end for FlyFast extending its applicability to models of systems based on predicate-based interaction. In
the above mentioned paper, correctness of the translation has been proved as well. In particular, it has
been shown that the probabilistic semantics of any PiFF model are isomorphic to those of the translation
of the model. In other words, the transition probability matrix of (the DTMCs of) the two models is the
same. A companion translation of bounded PCTL formulas is also defined [8] and proven correct.

The notion of the outbox used in PiFF is reminiscent of the notion of the ether in PALOMA [13]
in the sense that the collection of all outboxes together can be thought of as a kind of ether; but such a
collection is intrinsically distributed among the components so that it cannot represent a bottleneck in
the execution of the system neither a singularity point in the deterministic approximation.

We are not aware of other proposals, apart from [8], of probabilistic process languages, equipped
both with standard, DTMC-based, semantics and with mean-field ones, that provide a predicate-based
interaction framework, and that are fully supported by a tool for probabilistic simulation, exact and
mean-field model-checking.

We conclude this section recalling that mean-field/fluid procedures are based on approximations of
the global behaviour of a system. Consequently, the techniques should be considered as complementary
to other, possibly more accurate but often not as scalable, analysis techniques for CAS, primarily those
based on stochastic simulation, such as statistical model-checking.

In this paper we present some details of PiFF, a translation to FlyFast which simplifies that pro-
posed in [8] and an approach to model reduction based on probabilistic bisimulation for Inhomogeneous
DTMCs. In Section 2 we briefly present the main ingredients of the PiFF syntax and informal semantics,
and we recall those features of FlyFast directly relevant for understanding the translation of PiFF to the
FlyFast input language proposed in [8]. A revised and simplified version of the translation is described
in Section 3. In Section 4 we introduce a simplified language for the definition of transition-probabilities
in PiFF that allows us to define in Section 5 a model reduction procedure of the translation result, based
on a notion of bisimulation for the kind of IDTMCs of interest, introduced in Section 5 as well. An
example of application of the procedure is presented in Section 6. Some conclusions are drawn in Sec-
tion 7. A formal proof of decidability of the cumulative probability test for state-space reduction based
on bisimulation is provided in the Appendix.

2 Summary on PiFF and FlyFast

In the following we present the main ingredients of PiFF and the features of FlyFast relevant for the
present paper.

2.1 PiFF

A PiFF system model specification ϒ = (∆ϒ,Fϒ,Σ0)
(N) is a triple where Fϒ is the set of relevant function

definitions (e.g. store updates, auxiliary constants and functions), ∆ϒ is a set of state defining equations,
and Σ0 is the initial system state (an N-tuple of component states, each of which being a 3-tuple (C,γ,O)
of agent state C, store γ and outbox O). We describe the relevant details below referring to [8] for the
formal definition probabilistic semantics of the language.
The PiFF type system consists of floating point values and operations, as in FlyFast, plus simple enu-
meration types for attributes, declared according to the syntax attype < name> enum < id−list>.
< id−list> is a finite list of identifiers. Of course, attributes can also take floating point values.

In Figure 1 the attribute type Space is defined that consists of four values A,B,C,D modelling four

D. Latella, M. Massink 5

attype Space enum A,B,C,D;
...

const H= 0.6;

const L= 1−H;

const Hdiv2= H/2;

const Ldiv2= L/2;
...

attribute loc : Space;
...

func Hr(x : Space) : Space; x endfunc;

func N(x : Space) : Space; case x of A : A;B : B;C : B;D : A endfunc;

func S(x : Space) : Space; case x of A : D;B : C;C : C;D : D endfunc;

func E(x : Space) : Space; case x of A : A;B : A;C : D;D : D endfunc;

func W(x : Space) : Space; case x of A : B;B : B;C : C;D : C endfunc;
...

func pHr(x : Space) : float; case x of A : H;B : L;C : H;D : L endfunc;

func pN(x : Space) : float; case x of A : 0;B : 0;C : Ldiv2;D : Hdiv2 endfunc;

func pS(x : Space) : float; case x of A : Ldiv2;B : Hdiv2;C : 0;D : 0 endfunc;

func pE(x : Space) : float; case x of A : 0;B : Hdiv2;C : Ldiv2;D : 0 endfunc;

func pW(x : Space) : float; case x of A : Ldiv2;B : 0;C : 0;D : Hdiv2 endfunc;
...

update Jump
my.loc := Hr(my.loc) with pHr(my.loc);
my.loc := N(my.loc) with pN(my.loc);
my.loc := S(my.loc) with pS(my.loc);
my.loc := E(my.loc) with pE(my.loc);
my.loc := W(my.loc) with pW(my.loc)
endupdate

Figure 1: A fragment of FSI .

6 Designing Attribute-based FlyFast

locations. Some auxiliary constants are defined, using the const construct inherited from FlyFast:
const < name> = < value>.

A PiFF store update definition has the following syntax3:
update upd
my.a1 := e11, . . . ,my.ak := ek1with p1;
...
my.a1 := e1n, . . . ,my.ak := eknwith pn

endupdate

where upd is the update name (unique within the system model specification), a1, . . . ,ak are the at-
tribute names of the component, e11, . . . ,ekn and p1, . . . , pn are attribute/store-probability expressions
respectively, with syntax defined according to the grammars e ::= va | ca | my.a | f na(e1, . . . ,em) and
p ::= vp | cp | f np(e1, . . . ,em). In the above definition of attribute expressions va is an attribute value
(drawn from finite set V of attribute values), ca is an attribute constant in V defined using the const;
a ∈ {a1, . . . ,ak} is an attribute name and f na is an attribute function defined by the user in Fϒ, which,
when applied to attribute expressions e1, . . . ,em returns an attribute value; the syntax for such function
definitions afd is given below:

afd ::= func f na(x1 : T 1, . . . ,xm : T m) : T ;afb endfunc
afb ::= e |case (x1, . . . ,xm) of(va11 , . . . ,vam1) : e1;(va12 , . . . ,vam2) : e2; . . .(va1k , . . . ,vamk) : ek

where f na is the name of the attribute function, x1 : T 1, . . . ,xm : T m are its parameters and their relative
types, T is the type of the result of f na; e, ei are attribute-expressions and vai j are attribute-values.

In Figure 1 attribute functions N,S,E,W are defined for North, South, East, and West, such that Space
models the Cartesian space with four quadrants: A= N(D) = E(B), B= N(C) = W(A), and so on, as shown
diagrammatically in Figure 2 right. Function Hr is the identity on Space.

In the definition of store-probability expressions vp ∈ (0,1], cp is a store-probability constant in (0,1]
defined using the FlyFast const construct, and f np is a store-probability function defined by the user
in Fϒ, which, when applied to attribute expressions e1, . . . ,em returns a probability value.The syntax for
store-probability function definitions pfd is similar to that of attribute functions:

pfd ::= func f np(x1 : T 1, . . . ,xm : T m) : float;pfb endfunc
pfb ::= p |case (x1, . . . ,xm) of(va11 , . . . ,vam1) : p1;(va12 , . . . ,vam2) : p2; . . .(va1k , . . . ,vamk) : pk

where f np is the name of the store-probability function, the result type is float (actually the range [0,1])
x1 : T 1, . . . ,xm : T m are its parameters and their relative types, p, pi are store-probability expressions and
vai j are attribute-values. In any store update definition it must be guaranteed that the values of p1 . . . pn

sum up4 to 1. The informal meaning is clear. The store update will make attributes a1, . . . ,ak take the
values of e1i, . . . ,eki respectively with probability equal to the value of pi.

In Figure 1 store-probability functions pHr,pN,pS,pE,pW are defined that give the probabilities of
not moving (pHr), or of jumping to North (pN), South (pS), East (pE), West (pW), as functions of the

3In [8] a slightly different syntax for store updates has been used.
4In this version of the translation we allow only flat updates, i.e. the specific probability of each combination of values

assigned to the attributes must be given explicitly. Other possibilities could be defined using combinations of (independent)
probability distributions.

D. Latella, M. Massink 7

S := frc(I) :: inf∗[⊥]〈〉Jump.I +

frc(S) :: nsc∗[⊥]〈〉Jump.S

I := ii :: inf∗[⊥]〈〉Jump.I +

ir :: rec∗[⊥]〈〉Jump.S

Figure 2: SI, a behavioural model.

current location.

Example 1 A simplified version of the behaviour of the epidemic process discussed in [8] is shown in
Figure 2 left5. In Figure 1 we show a fragment of FSI defining store update Jump together with the relevant
type, constant and function definitions as introduced above. The component has just one attribute, named
loc, with values in Space. The effect of Jump executed by a component in which loc is bound to quadrant
` is to leave the value of loc unchanged with probability pHr(`), change it to the quadrant North of ` with
probability pN(`), and so on. Note that H> L and this implies that higher probability is assigned to A and
C and low probability to B and D. This is represented in Figure 2 right where higher probability locations
are shown in green and lower probability ones are shown in red; moreover, the relevant probabilities are
represented as arrows (H/2,L/2) or self-loops (H,L). A susceptible (state S) component becomes infected
(state I) via an inf action which takes place with probability equal to the fraction of components in the
system which are currently infected (i.e. frc(I)); it remains in state S via the self-loop labelled by action
nsc, with probability frc(S) = 1−frc(I). An infected node (state I) may recover, entering state S with
action rec and probability ir; while infected, it keeps executing action inf, with probability ii. Note
that, for the sake of simplicity, we use only internal actions, modelled by means of output actions with
predicate false (⊥). We assume that in the initial global state all outboxes are non-empty; each contains
the initial store of the specific component (i.e., its initial location), predicate ⊥ and the empty tuple 〈〉).

A PiFF state defining equation has the following (abstract) form: C := ∑ j∈J[g j]p j :: act j.C j where either
[g j]p j is the keyword rest or:

• g j is a boolean expression b which may depend on the current store, but not on the current occu-
pancy measure vector: b ::=> | ⊥ | e./e | ¬b | b ∧ b and e ::= va | ca |my.a where> (⊥) denotes
the constant true (false), ./ ∈ {≥,>,≤,<}, va is an attribute value (drawn from finite set V of
attribute values), ca is an attribute constant in V defined using the FlyFast const construct, and a
is the name of an attribute of the component.

• p j is a transition probability expression p ::= vp |cp | frc(C) | frc(π) |∏i∈I pi | ∑i∈I pi |1− p, for
finite I, where vp ∈ (0,1], cp a constant in (0,1] defined via the const construct, and π is defined as
b above, but where expressions e can also be attribute names a (i.e. e ::= va | ca |my.a | a); frc(C)
is the fraction of components currently in state C over the total number N; similarly, frc(π) is the
fraction of components the current store of which satisfies π , over the total number N. Note that it
must be guaranteed that ∏i∈I pi ≤ 1 and ∑i∈I pi ≤ 1.

5We focus only on those features that are most relevant for the present paper. In [8] also other features are shown like, e.g.
the use of (predicate-based) input actions, which are not the main subject of this paper.

8 Designing Attribute-based FlyFast

• act j can be an output action α∗[π]〈〉σ or an input action α∗[π]()σ , where π is as above and σ is
the name of a store update. Note that in the case of an input action, π refers to the store of the
partner component in the previous step of the computation.

If [g j]p j = rest, then act j must be an output action α∗[π]〈〉σ , to be executed with the residual probability.

2.2 FlyFast

FlyFast accepts a specification 〈∆,A,C0〉(N) of a model of a system consisting of the clock-synchronous
product of N instances of a probabilistic agent. The states of the DTMC-like agent model are specified
by a set of state-defining equations ∆. The (abstract) form of a state defining equation is the following
C := ∑

r
i=1 ai.Ci where ai ∈ A—the set of FlyFast actions—C,Ci ∈S—the set of FlyFast states—and,

for i, j = 1, . . . ,r ai 6= a j if i 6= j; note that Ci = C j with i 6= j is allowed instead6. Each action has a
probability assigned by means of an action probability function definition in A of the form a :: exp where
exp is an expression consisting of constants and frc(C) terms. Constants are floating point values or
names associated to such values using the construct const < name> = < value>; frc(C) denotes the
element associated to state C in the current occupancy measure vector7. So, strictly speaking, ∆ and A
characterise an inhomogeneous DTMC whose probability matrix K(m) is a function of the occupancy
measure vector m such that for each pair of states C,C′, the matrix element K(m)C,C′ is the probability of
jumping from C to C′ given the current occupancy measure vector m. Letting S∆ be the set of states of the
agent, with |S∆|= S, and U S = {(m1, . . . ,mS)|m1 + . . .+mS = 1} denote the unit simplex of dimension
S, we have K : U S×S∆×S∆ → [0,1]. Matrix K is generated directly from the input specification
〈∆,A,C0〉(N); the reader interested in the details of how to derive K is referred to [26, 28]. Auxiliary
function definitions can be specified in A. The initial state C0 is a vector of size N consisting of the initial
state of each individual object. Finally, note that in matrix K(m) the information on specific actions is
lost, which is common in PCTL/DTMC based approaches; furthermore, we note that, by construction,
K(m) does not depend on N (see [26, 28] for details).

3 A revised translation

As in [8], we define a translation such that, given a PiFF system specification ϒ = (∆ϒ,Fϒ,Σ0)
(N), the

translation returns the FlyFast system specification 〈∆,A,C0〉(N) preserving probabilistic semantics. The
predicate-based FlyFast front-end is then completed with a simple translation at the PCTL level, for
which we refer to [8].

The system model specification translation consists of two phases. In the first phase, each action
in the input system model specification ϒ is annotated with an identifier which is unique within the
specification. We let ℵ(ϒ) denote the resulting specification. These annotations will make action names
unique specification-wide thus eliminating complications which may arise from multiple occurrences
of the same action, in particular when leading to the same state (see [8] for details). Of course, these
annotations are disregarded in the probabilistic semantics, when considering the interaction model of
components. In other words, an output action α〈〉 in outbox (γ,π,α〈〉) must match with any input

6The concrete FlyFast syntax is: state C{a 1.C 1 + a 2.C 2 ...a r.C r}.
7The occupancy measure vector is a vector with as many elements as the number of states of an individual agent; the element

associated to a specific state gives the fraction of the subpopulation currently in that state over the size of the overall population.
The occupancy measure vector is a compact representation of the system global state.

D. Latella, M. Massink 9

action α() even if α〈〉 would actually correspond to (α, ι)∗[π]〈〉 and α() would actually correspond to
(α,η)∗[π ′](). Apart from this detail, the probabilistic semantics as defined in [8] remain unchanged.

The second phase is defined by the translation algorithm defined in Figure 5, which is a revised and
simplified version of that presented in [8] and is applied to ℵ(ϒ). We let I (ℵ(ϒ)) denote the result of
the translation, namely the pure FlyFast system specification 〈∆,A,C0〉(N).

We recall here some notation from [8]. We let S∆ϒ
denote the set of states of ϒ; Γ∆ϒ

is the set of
all stores defined over the attributes of ϒ—a store is a finite mapping from the attributes of the com-
ponent to a finite set of values V , thus Γ∆ϒ

is finite—and O∆ϒ
the finite set of all outboxes of ϒ. A

ϒ component-state is a triple (C,γ,O) ∈ S∆ϒ
× Γ∆ϒ

×O∆ϒ
= Ω∆ϒ

. If the component-state is the tar-
get of a transition modelling the execution of an output action, then O = (γ ′,π,α〈〉), where γ ′ is the
store of the (component-state) source of the transition, π is the predicate used in the action—actualised
with γ ′—and α〈〉 the actual message sent by the action. If, instead, the component-state is the target
of a transition for an input action, then O = 〈〉, i.e. the empty outbox. Note that the set of component
states of ℵ(ϒ) is identical to that of ϒ. Also the set of all stores of ℵ(ϒ) is the same as that of ϒ.
In the algorithm of Figure 5 by t ∗ t ′ we mean the syntactical term representing the product of terms
t and t ′; the notation is extended to PROD{t|cond(t)}, denoting the syntactical product t1 ∗ . . . ∗ tn if
{t|cond(t) = tt} = {t1, . . . , tn} 6= /0 and 1 otherwise. Similarly, SUM{t|cond(t)} denotes the syntactical
sum t1 + . . .+ tn if {t|cond(t) = tt} = {t1, . . . , tn} 6= /0 and 0 otherwise. The translation algorithm uses a
few auxiliary functions which we briefly discuss below:

• IS : Ω∆ϒ
→S is a total injection which maps every component state of ℵ(ϒ) to a distinct state

of I (ℵ(ϒ)); we recall that S denotes the set of state names of FlyFast models.

• IA : (S∆ϒ
×Γ∆ϒ

)× (Λ∆ϒ
× Iℵ)×Ω∆ϒ

→ A is a total injection where, as in [8], Λ∆ϒ
is the set of

action labels of ϒ and Iℵ is the set of unique identifiers used in the first phase of the translation.
We recall that A is the set of action names of FlyFast. The mapping of actions is a bit more
delicate because we have to respect FlyFast static constraints and, in particular, we have to avoid
multiple probability function definitions for the same action. A first source of potential violations
(i.e. multiple syntactical occurrences of the same action) has been removed by action annotation in
the first phase of the translation. A second source is the fact that the same action can take place in
different contexts (for example with different stores) or leading to different target component states
(maybe with different probabilities). To that purpose, we could distinguish different occurrences
of the same action in different transitions, each characterised by its source component-state and its
target component-state in Ω∆ϒ

. In practice, since an action of a component cannot be influenced
by the current outbox of the component, it is sufficient to restrict the first component of the domain
from Ω∆ϒ

to (S∆ϒ
×Γ∆ϒ

).

• The interpretation functions defined in Figure 3, namely those depending on stores only (and not
on occupancy measure vectors); we assume EL[[·]]γ extended to EL[[f n]]γ for defined function f n,
in the standard way. In Figure 3 βϒ denotes the constant to value bindings generated by the const
construct in the input model specification ϒ, whereas store update upd is defined as above.

• The translation function IP for transition probability expressions p j, defined in Figure 4.

Output actions are dealt with in step 1 of the algorithm of Figure 5. Let us consider, for example,
(inf,1)∗[⊥]〈〉Jump in the definition of state S in Figure 2 (assuming annotations are integer values and
the action has been annotated with 1). We know that the possible values for locations are A,B,C,D,
so that the set of all stores is {loc} → {A,B,C,D}. The algorithm generates 12 actions8. Let us focus

8Diagonal jumps are not contemplated in the model; technically this comes from the actual probability values used in the

10 Designing Attribute-based FlyFast

EL[[>]]γ = tt
EL[[⊥]]γ = ff
EL[[e1 ./e2]]γ = EL[[e1]]γ ./EL[[e2]]γ
EL[[¬b]]γ = ¬EL[[b]]γ
EL[[b1 ∧ b2]]γ = EL[[b1]]γ ∧ EL[[b2]]γ
EL[[va]]γ = va

EL[[ca]]γ = βϒ(ca)
EL[[vp]]γ = vp

EL[[cp]]γ = βϒ(cp)
EL[[a]]γ = a
EL[[my.a]]γ = γ(a)
EL[[f na(e1, . . . ,em)]]γ = EL[[f na]]γ(EL[[e1]]γ , . . . ,EL[[em]]γ)
EL[[f np(e1, . . . ,em)]]γ = EL[[f np]]γ(EL[[e1]]γ , . . . ,EL[[em]]γ)

EU[[upd]]γ = λγ ′.dom(γ ′) 6= {a1, . . . ,ak}→ 0;
γ ′(a1) = EL[[e11]]γ ∧ . . . ∧ γ ′(ak) = EL[[ek1]]γ → EL[[p1]]γ ;
...
γ ′(a1) = EL[[e1n]]γ ∧ . . . ∧ γ ′(ak) = EL[[ekn]]γ → EL[[pn]]γ ;
otherwise → 0

ER[[>]]γ = tt
ER[[⊥]]γ = ff
ER[[e1 ./e2]]γ = ER[[e1]]γ ./ER[[e2]]γ
ER[[¬b]]γ = ¬ER[[b]]γ
ER[[b1 ∧ b2]]γ = ER[[b1]]γ ∧ ER[[b2]]γ
ER[[va]]γ = va

ER[[ca]]γ = βϒ(ca)
ER[[a]]γ = γ(a)

Figure 3: Interpretation functions relevant for the translation

on the action ξ associated to local position A (i.e. γ = [loc 7→ A]) and possible next position B (i.e.
γ ′ = [loc 7→ B]); the algorithm will generate the FlyFast probability function definition ξ :: pW(A) ∗
(frc(I1)+ . . .+ frc(In))9 as well as a transition leading to (a state which is the encoding, via IS , of)
the component state with I as (proper) state, store γ ′, and outbox (γ,⊥,inf〈〉). Since the action is not
depending on the current outbox, in practice a copy of such a transition is generated for each component
state sharing the same proper state S and the same store γ . The translation scheme for input actions
is defined in case 2 and is similar, except that one has also to consider the sum of the fractions of the
possible partners. The translation of the rest case is straightforward. Note that for every ζ :: r ∗q ∈ Aγ ,
r is a probability value associated to a store update; since any store update characterizes a probability
distribution over stores, assuming the range of such a distribution is {r1, . . . ,rn} if ζi :: ri ∗ q ∈ Aγ , then
also ζ j :: r j ∗ q ∈ Aγ for all j = 1, . . . ,n, j 6= i with ∑

n
i=1 r j = 1. Thus the remaining probability is

qγ = (1−SUM{q|ζ :: r∗q∈ Aγ}), where q is either a term IP(p j)γ , with p j occurring in a summand of
the state defining equation (see step 1), or a term IP(p j)γ ∗SUM{frc(IS(Σ))| . . .} (see step 2). It worth

definition of Jump.
9Here we assume that IS({(C,γ,O) ∈Ω∆ϒ

|C = I}) = {I1, . . . ,In} ⊂S .

D. Latella, M. Massink 11

IP(vp)γ = vp

IP(cp)γ = βϒ(cp)
IP(frc(C))γ = SUM{frc(IS((C′,γ ′,O′))) | (C′,γ ′,O′) ∈Ω∆ϒ

and C′ =C}
IP(frc(π))γ = SUM{frc(IS((C′,γ ′,O′))) | (C′,γ ′,O′) ∈Ω∆ϒ

and ER[[EL[[π]]γ]]γ ′ = tt}
IP(∏i∈I pi)γ = PROD{IP(pi)γ | i ∈ I}
IP(∑i∈I pi)γ = SUM{IP(pi)γ | i ∈ I}

Figure 4: Transition probability expressions translation function definition

For each state equation C := ∑ j∈J [g j]p j :: act j.C j in ∆ϒ:

1. For each output action (α, ι)∗[π]〈〉σ = actk with k ∈ J and [gk]pk 6= rest,
for each γ ∈Γ∆ϒ

s.t. EL[[gk]]γ = tt and (C,γ,O)∈Ω∆ϒ
for some O∈O∆ϒ

, for each γ ′ ∈Γ∆ϒ
s.t. (Ck,γ

′,(γ,EL[[π]]γ ,α〈〉))∈Ω∆ϒ
and

EU[[σ]]γ (γ
′)> 0, let ξ = IA ((C,γ),(α〈〉, ι),(Ck,γ

′,(γ,EL[[π]]γ ,α〈〉))) be a fresh new action in the FlyFast model specification
I (ℵ(ϒ)) = 〈∆,A,C0〉(N) and add the following action probability function definition in A: ξ :: EU[[σ]]γ (γ

′)∗IP (pk)γ .
Moreover, for each outbox O ∈ O∆ϒ

s.t. (C,γ,O) ∈ Ω∆ϒ
, the following summand is added to the equation in ∆ for state

IS ((C,γ,O)): ξ .IS ((Ck,γ
′,(γ,EL[[π]]γ ,α〈〉)));

2. For each input action (α, ι)∗[π]()σ = actk , with k ∈ J and [gk]pk 6= rest,
for each γ ∈ Γ∆ϒ

s.t. EL[[gk]]γ = tt and (C,γ,O) ∈ Ω∆ϒ
for some O ∈ O∆ϒ

, for each γ ′ ∈ Γ∆ϒ
s.t. (Ck,γ

′,〈〉) ∈ Ω∆ϒ
and

EU[[σ]]γ (γ
′)> 0,

let ξ = IA ((C,γ),(α(), ι),(Ck,γ
′,〈〉)), be a fresh new action in the FlyFast model specification I (ℵ(ϒ)) = 〈∆,A,C0〉(N) and

add the following action probability function definition in A:
ξ :: EU[[σ]]γ (γ

′)∗IP (pk)γ∗
∗SUM{frc(IS (Σ))|Σ = (C′′,γ ′′,(γ,π,α〈〉)) ∈Ω∆ϒ

∧
∧ ER[[π]]γ = ER[[EL[[π]]γ]]γ = tt}.

Moreover, for each outbox O ∈ O∆ϒ
s.t. (C,γ,O) ∈ Ω∆ϒ

, the following summand is added to the equation in ∆ for state
IS ((C,γ,O)): ξ .IS ((Ck,γ

′,〈〉));

3. If there exists k ∈ J s.t. [gk]pk = rest, and actk = (α, ι)∗[π]〈〉σ , for each γ ∈ Γ∆ϒ
s.t. (C,γ,O) ∈ Ω∆ϒ

for some O ∈
O∆ϒ

, let Aγ be the set of probability function definitions which has been constructed in steps (1) and (2) above. Let
qγ be defined by qγ = (1 − SUM{q|ζ :: r ∗ q ∈ Aγ}). For all γ ′ ∈ Γ∆ϒ

s.t. (Ck,γ
′,(γ,EL[[π]]γ ,α〈〉)) ∈ Ω∆ϒ

, let ξ =
IA ((C,γ),(α, ι)〈〉,(Ck,γ

′,(γ,EL[[π]]γ ,α〈〉))) ∈ Ω∆ϒ
, be a fresh new action in the FlyFast model specification I (ℵ(ϒ)) =

〈∆,A,C0〉(N) and add the following action probability function definition in A: ξ :: EU[[σ]]γ (γ
′)∗qγ .

Moreover, for each outbox O ∈ O∆ϒ
s.t. (C,γ,O) ∈ Ω∆ϒ

, the following summand is added to the equation in ∆ for state
IS ((C,γ,O)): ξ .IS ((Ck,γ

′,(γ,EL[[π]]γ ,α〈〉)));

4. No other action probability function definition and transition is included and the initial state C0 of I (ϒ) is defined as C0 =
IS (Σ0).

Figure 5: The translation algorithm

pointing out here that the translation of Figure 5 is essentially the same as that presented in [8], when the
latter is applied to the sublanguage of PiFF where one requires that each action occurs at most once. The
annotations performed in the first phase of the translation ensure that this requirement is fulfilled; as we
noted above, these annotations are purely syntactical and are disregarded at the semantics level. We also
recall that in probabilistic, pure DTMC process language semantics, actions are in the end dropped and,
for each pair of states, the cumulative probability of such actions is assigned to the single transition from
one of the states to the other one. Consequently, correctness of the translation, proved in [8], is preserved
by the simplified version presented in this paper.

We note that in the algorithm sets Ω∆ϒ
, Γ∆ϒ

and O∆ϒ
are used. Of course, an alternative approach

could be one which considers only the set Ω∆ϒ
of component states which are reachable from a given

initial component state and, consequently, the sets Γ∆ϒ
and O∆ϒ

of used stores and outboxes. In this way,
the size of the resulting FlyFast model specification would be smaller (for example in terms of number of

12 Designing Attribute-based FlyFast

states). On the other hand, this approach might require recompilation for each model-checking session
starting from a different initial component state.

4 A simplified language for Bisimulation-based optimisation

In this section we consider a simplified language for transition probability expressions appearing in
state defining equations that will allow us to perform bisimulation based optimisation of the result
〈∆,A,C0〉(N). The restricted syntax for transition probability expressions p we use in this section is
the following: p ::= ep |ep · frc(C) |ep · frc(π) and ep ::= vp |cp where vp and cp and π are defined as in
Section 2.

By inspection of the FlyFast translation as defined in Section 3, and recalling that the set S∆ of the
states of the resulting FlyFast model, ranged over by z,zi, . . ., has cardinality S, it is easy to see that the
probability action definition in the result of a translation of a generic output action is either of the form
ξ :: k, or it is of the form ξ :: k ∗SUM{frc(zi)|i ∈ I} where k is a FlyFast constant. Moreover, if p was
of the form ep · frc(C), then index set I ⊆ {1, . . . ,S} identifies those states in S∆ that represent (via IS)
component states with proper local state C; if instead, p was of the form ep · frc(π), then I ⊆ {1, . . . ,S}
identifies those states in S∆ that represent (via IS) component states with a store satisfying π in the
relevant store. At the FlyFast semantics level, recalling that frc(zi) is exactly the i-th component mi of the
occupancy measure vector m = (m1, . . . ,mS) of the model, we can rewrite10 the above as k or k ·∑i∈I mi.

Similarly, the probability action definition in the result of a translation of a generic input action
(α, ι)∗[π ′]() (executed in local store γ ′) will necessarily be of the form k ·

(
∑ j∈I′ m j

)
or of the form

k ·
(
∑ j∈I m j

)
·
(
∑ j∈I′ m j

)
, for index sets I as above and I′ as follows:

I′ = {i ∈ {1, . . . ,S}|∃C,γ,γ,π, s.t.
zi = IS((C,γ,(γ,π,α〈〉))) ∧ ER[[π]]γ ′ = ER[[EL[[π

′]]γ ′]]γ = tt}

An immediate consequence of using the above mentioned restricted syntax for the probability func-
tion definitions is that, letting K : U S×S×S→ [0,1] be the transition probability matrix for the FlyFast
translation of a model specification, we have that K(m1, . . . ,mS)z,z′ is a polynomial function of degree at
most 2 in variables m1, . . . ,mS.

5 Bisimilarity and State-space Reduction

The following definition generalises standard probabilistic bisimilarity for state labelled DTMCs to the
case in which transition probabilities are functions instead of constant values.

Definition 1 For finite set of states S, with |S| = S, let K : U S×S×S→ [0,1] and, for z ∈S and
Q ⊆S, write K(m)z,Q for ∑z′∈Q K(m)z,z′ . Let furthermore L : S→ 2AP be a state-labelling function,
for a given set AP of atomic propositions. An equivalence relation R ⊆S×S is called a bisimulation
relation if and only if z1 R z2 implies: (i) L (z1) = L (z2) and (ii) K(m)z1,Q = K(m)z2,Q, for all m ∈U S

and Q ∈S/R. The bisimulation equivalence on S is the largest bisimulation relation R⊆S×S.

We point out that the notion of bisimilarity does not introduce any approximation, and consequently error,
in a model and related analyses. Bisimilarity is only a way for abstracting from details that are irrelevant

10With a little notational abuse using k also as the actual value in [0,1] of the FlyFast constant k.

D. Latella, M. Massink 13

L	

H	

h	
H	

L	

l

Figure 6: SI in two quadrants

for the specific analyses of interest. In particular, it is useful to remark that bisimilarity preserves also
state labels, which are directly related to the atomic propositions of logic formulas for which model-
checking is performed. Actually, it is well known that probabilistic bisimilarity coincides with PCTL
equivalence, i.e. the equivalence induced on system states by their satisfaction of PCTL formulas, for
finitely branching systems [3].

Note that K(m1, . . . ,mS)z1,Q = K(m1, . . . ,mS)z2,Q for all (m1, . . . ,mS) ∈ U S is in general not decid-
able. If instead we consider only transition probability matrices as in Section 4, we see that each side
of the above equality is a polynomial function of degree at most 2 in variables m1, . . . ,mS and one can
define a normal form for the polynomial expressions in m1, . . . ,mS supported by an ordering relation on
the variable names (e.g. m1≺ . . .≺mS) and get expressions of the general form

(
∑

S
i=1 ∑

S
j≥i hi j ·mi ·m j

)
+(

∑
S
i=1 hi ·mi

)
+ h for suitable hi j,hi,h. Actually, such expressions can always be rewritten in the form(

∑
S
i=1 ∑

S
j≥i ui j ·mi ·m j

)
+ u for suitable ui j,u since, recalling that ∑

S
i=1 mi = 1, we get ∑

S
i=1 hi ·mi =(

∑
S
i=1 mi

)
·
(
∑

S
i=1 hi ·mi

)
which, by simple algebraic manipulation, yields an expression of the following

form:
(

∑
S
i=1 ∑

S
j≥i u′i j ·mi ·m j

)
; finally, we get

(
∑

S
i=1 ∑

S
j≥i ui j ·mi ·m j

)
+ u by letting ui j = hi j + u′i j and

u = h. The following proposition thus establishes decidability of K(m1, . . . ,mS)z1,Q = K(m1, . . . ,mS)z2,Q

for all (m1, . . . ,mS) ∈U S for transition probability matrices as in Section 4:

Proposition 1
Let A(m1, . . . ,mS) =

(
∑

S
i=1 ∑

S
j≥i ai j ·mi ·m j

)
+ a and B(m1, . . . ,mS) =

(
∑

S
i=1 ∑

S
j≥i bi j ·mi ·m j

)
+ b with

ai j,bi j,a,b ∈ R, where m1, . . . ,mS are variables taking values over R≥0 with ∑
S
i=1 mi = 1. The following

holds: (∀m1, . . . ,mS.A(m1, . . . ,mS) = B(m1, . . . ,mS))⇔ ((∀i, j = 1, . . . ,S with i≤ j.ai j = bi j)∧a = b).

The above results can be used for reduction of the state-space of the individual agent, i.e. the resulting
FlyFast model specification, after the application of the translation described in Section 3, by using for
instance the standard probabilistic relational coarsest set partition problem algorithm (see e.g. [21], page
227) with slight obvious modifications due to the presence of state-labels and the need of symbolic
computation capabilities required for checking (degree 2) polynomial expressions equality.11 It is worth
mentioning that state aggregation via bisimilarity is effective only if there is some sort of compatibility
between (i) state labelling—and, consequently, the specific PCTL atomic propositions one uses—and
(ii) the way probabilities are assigned to transitions—and, consequently, the cumulative probabilities to
equivalence classes. We will come back on this issue in the following section.

14 Designing Attribute-based FlyFast

SA SB SC SD IA IB IC ID
SA HφS(m) L

2 φS(m) 0 L
2 φS(m) HφI(m) L

2 φI(m) 0 L
2 φI(m)

SB H
2 φS(m) LφS(m) H

2 φS(m) 0 H
2 φI(m) LφI(m) H

2 φI(m) 0
SC 0 L

2 φS(m) HφS(m) L
2 φS(m) 0 L

2 φI(m) HφI(m) L
2 φI(m)

SD H
2 φS(m) 0 H

2 φS(m) LφS(m) H
2 φI(m) 0 H

2 φI(m) LφI(m)

IA Hir L
2 ir 0 L

2 ir Hii L
2 ii 0 L

2 ii
IB H

2 ir Lir H
2 ir 0 H

2 ii Lii H
2 ii 0

IC 0 L
2 ir Hir L

2 ir 0 L
2 ii Hii L

2 ii
ID H

2 ir 0 H
2 ir Lir H

2 ii 0 H
2 ii Lii

Figure 7: IDTMC transition probability matrix K(m), for m in U 8.

6 Example

The application of the translation to the specification of Example 1 generates an agent model with 8
states, say S∆ = {SA,SB,SC,SD, IA, IB, IC, ID}12 with associated IDTMC probability transition matrix
as shown in Figure 7 where mxy represents the fraction of objects currently in state xy for x ∈ {S, I} and
y∈ {A,B,C,D}—i.e. the components in state x and with loc= y in the original specification of Fig 2—so
that m=(mSA,mSB,mSC,mSD,mIA,mIB,mIC,mID) is the occupancy measure vector. In Figure 7, functions
φS and φI are used as abbreviations in the obvious way: φS(m) = mSA +mSB +mSC +mSD and φI(m) =
mIA +mIB +mIC +mID. Let us assume now that we are interested in checking PCTL formulas on the
model of Fig 2 which distinguish components located in A or C from those located in B or D, and
those in state S from those in state I, that is we consider atomic propositions Sh, Ih,Sl and Il and a
labelling L such that L (SA) = L (SC) = {Sh}, L (IA) = L (IC) = {Ih}, L (SB) = L (SD) = {Sl},
and L (IB) = L (ID) = {Il}.

Consider relation R on S∆ defined as R = IS∆
∪{(SA,SC),(SB,SD),(IA, IC),(IB, ID)}∪{(SC,SA),

(SD,SB),(IC, IA),(ID, IB)} where IS∆
is the identity relation on S∆. It is very easy to show that R is

a bisimulation according to Definition 1. Clearly R is an equivalence relation and its quotient S∆/R
is the set {QSh,QSl,QIh,QIl} with QSh = {SA,SC},QSl = {SB,SD},QIh = {IA, IC},QIl = {IB, ID}. In
addition, for all z1,z2 ∈S∆, whenever z1 Rz2, we have L (z1) = L (z2) and K(m)z1,Q = K(m)z2,Q for all
Q∈S∆/R and for all m, as one can easily check; clearly, R is also the largest bisimulation relation on S∆.
The relationship between the two occupancy measure vectors is: mQSh = mSA +mSC, mQSl = mSB +mSD,
mQIh = mIA + mIC, and mQIl = mIB + mID. We can thus use the reduced IDTMC defined by matrix
K̂(mQSh ,mQSl ,mQIh ,mQIl) shown in Figure 9. It corresponds to the FlyFast agent specification ∆̂ given
in Figure 8. In a sense, the high probability locations A and C, in the new model, have collapsed into a
single one, namely h and the low probability ones (B and D) have collapsed into l, as shown in Figure 6.
We point out again the correspondence between the symmetry in the space jump probability on one side
and the definition of the state labelling function on the other side. Finally, note that a coarser labelling
like, e.g. L ′(SA) =L ′(SC) =L ′(IA) =L ′(IC) = {h}, L ′(SB) =L ′(SD) =L ′(IB) =L ′(ID) = {l}
would make the model collapse into one with only two states, Qh and Ql , with probabilities H : Qh →
Qh,H : Ql → Qh, L : Qh → Ql and L : Qh → Ql where only the location would be modelled whereas

11For instance, on page 227 of [21], line 12, v(x,S) = v(y,S) should be replaced with L(x) = L(y)∧ v(x,S) = v(y,S) and in
line 13, v(x,S) 6= v(y,S) should be replaced with L(x) 6= L(y)∨ v(x,S) 6= v(y,S), in order to take state labels into consideration
as well. Of course v(x,S) (L, respectively)is to be intended as K(m)z,Q (L , respectively), using the notation we introduced
above for Bisimilarity.

12Actually the agent resulting from the translation of Figure 5 has a higher number of states due to the different possibilities
for outbox values. Many of these states are unreachable from the initial state since the agent has no input action and we assume
an initial unreachable state pruning has been performed.

D. Latella, M. Massink 15

action QSh_inf_QIh: H*(frc(QIh)+frc(QIl)); action QSh_nsc_QSh: H*(frc(QSh)+frc(QSl));

action QSh_inf_QIl: L*(frc(QIh)+frc(QIl)); action QSh_nsc_QSl: L*(frc(QSh)+frc(QSl));

action QSl_inf_QIh: H*(frc(QIh)+frc(QIl)); action QSl_nsc_QSh: H*(frc(QSh)+frc(QSl));

action QSl_inf_QIl: L*(frc(QIh)+frc(QIl)); action QSl_nsc_QSl: L*(frc(QSh)+frc(QSl));

action QIh_inf_QIh: H*ii; action QIh_rec_QSh: H*ir;

action QIh_inf_QIl: L*ii; action QIh_rec_QSl: L*ir;

action QIl_inf_QIh: H*ii; action QIl_rec_QSh: H*ir;

action QIl_inf_QIl: L*ii; action QIl_rec_QSl: L*ir;

state QSh{QSh_inf_QIh.QIh + QSh_inf_QIl.QIl + QSh_nsc_QSh.QSh + QSh_nsc_QSl.QSl}

state QSl{QSl_inf_QIh.QIh + QSl_inf_QIl.QIl + QSl_nsc_QSh.QSh + QSl_nsc_QSl.QSl}

state QIh{QIh_inf_QIh.QIh + QIh_inf_QIl.QIl + QIh_rec_QSh.QSh + QIh_rec_QSl.QSl}

state QIl{QIl_inf_QIh.QIh + QIl_inf_QIl.QIl + QIl_rec_QSh.QSh +QIl_rec_QSl.QSl}

Figure 8: Reduced agent specification ∆̂

QSh QSl QIh QIl
QSh H · (mQSh +mQSl) L · (mQSh +mQSl) H · (mQIh +mQIl) L · (mQIh +mQIl)
QSl H · (mQSh +mQSl) L · (mQSh +mQSl) H · (mQIh +mQIl) L · (mQIh +mQIl)
QIh H · ir L · ir H · ii L · ii
QIl H · ir L · ir H · ii L · ii

Figure 9: IDTMC transition probability matrix function K̂(m), for m in U 4.

information on the infection status would be lost.

7 Conclusions

PiFF [8] is a language for a predicate-based front-end of FlyFast, an on-the-fly mean-field model-
checking tool. In this paper we presented a simplified version of the translation proposed in [8] together
with an approach for model reduction that can be applied to the result of the translation. The approach
is based on probabilistic bisimilarity for inhomogeneous DTMCs. An example of application of the pro-
cedure has been shown. The implementation of a compiler for PiFF mapping the language to FlyFast
is under development as an add-on of FlyFast. We plan to apply the resulting extended tool to more as
well as more complex models, in order to get concrete insights on the practical applicability of the frame-
work and on the actual limitations imposed by the restrictions necessary for exploiting bisimilarity-based
state-space reduction. Investigating possible ways of relaxing some of such restrictions will also be an
interesting line of research.

Acknowledgments Research partially funded by EU Project n. 600708 A Quantitative Approach to Man-
agement and Design of Collective and Adaptive Behaviours (QUANTICOL).

References
[1] A. Aziz, K. Sanwal, V. Singhal & R. Brayton (2000): Model checking Continuous Time Markov Chains.

ACM Transactions on Computational Logic 1(1), pp. 162–170.
[2] C. Baier, B. Haverkort, H. Hermanns & J.-P. Katoen (2003): Model-Checking Algorithms for Continuous-

Time Markov Chains. IEEE Transactions on Software Engineering. IEEE CS 29(6), pp. 524–541.
[3] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT Press.

16 Designing Attribute-based FlyFast

[4] Girish Bhat, Rance Cleaveland & Orna Grumberg (1995): Efficient On-the-Fly Model Checking for CTL*.
In: LICS, IEEE Computer Society, pp. 388–397. Available at http://doi.ieeecomputersociety.org/
10.1109/LICS.1995.523273.

[5] L. Bortolussi, G. Cabri, G. Di Marzo Serugendo, V. Galpin, J. Hillston, R. Lanciani, M. Massink & D. Trib-
astone, M. Weyns (2015): Verification of CAS. In J. Hillston, J. Pitt, M. Wirsing & F. Zambonelli, edi-
tors: Collective Adaptive Systems: Qualitative and Quantitative Modelling and Analysis, Schloss Dagstuhl
Leibniz-Zentrum fur Informatik, Dagstuhl Publishing, Germany. Dagstuhl Reports. Vol. 4, Issue 12. Report
from Dagstuhl Seminar 14512. ISSN 2192-5283.

[6] Luca Bortolussi & Jane Hillston (2012): Fluid Model Checking. In M. Koutny & I. Ulidowski, edi-
tors: CONCUR, LNCS 7454, Springer-Verlag, pp. 333–347. Available at http://dx.doi.org/10.1007/
978-3-642-32940-1_24.

[7] Luca Bortolussi & Jane Hillston (2015): Model checking single agent behaviours by fluid approximation. Inf.
Comput. 242, pp. 183–226, doi:10.1016/j.ic.2015.03.002.

[8] V. Ciancia, D. Latella & M. Massink (2016): On-the-Fly Mean-field Model-checking for Attribute-based
Coordination. In A. Lluch Lafuente & J. Proença, editors: Coordination Models and Languages, LNCS
9686, Springer-Verlag, pp. 67–83. DOI: 10.1007/978-3-319-39519-7 5, ISSN: 0302-9743, ISBN: 978-3-
319-39518-0 (print), 978-3-319-39519-7 (on line).

[9] C. Courcoubetis, M. Vardi, P. Wolper & M. Yannakakis (1992): Memory-efficient algorithms for the verifi-
cation of temporal properties. Form. Methods Syst. Des. 1(2-3), pp. 275–288.

[10] R.W.R. Darling & J.R. Norris (2008): Differential equation approximations for Markov chains. Probability
Surveys 5, pp. 37–79, doi:10.1214/07-PS121.

[11] R. De Nicola, D. Latella, A. Lluch Lafuente, M. Loreti, A. Margheri, M. Massink, A. Morichetta, R. Pugliese,
F. Tiezzi & A. Vandin (2015): The SCEL Language: Design, Implementation, Verification. In M. Wirsing,
M. Hölzl, N. Koch & P. Mayer, editors: Software Engineering for Collective Autonomic Systems, chapter
I.1, LNCS 8998, Springer-Verlag, pp. 3–71. DOI: 10.1007/978-3-319-16310-9 1, ISBN 978-3-319-16309-3
(print), 978-3-319-16310-9 (online), ISSN 0302-9743.

[12] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci & M. Venturini Zilli (2004): Bounded Probabilistic Model
Checking with the Muralpha Verifier. In A. J. Hu & A. K. Martin, editors: FMCAD 2004, LNCS 3312,
Springer, pp. 214–229.

[13] C. Feng & J. Hillston (2014): PALOMA: A Process Algebra for Located Markovian Agents. In G. Norman &
W. Sanders, editors: QEST 2014, LNCS 8657, Springer-Verlag, pp. 266–280.

[14] Nicolas Gast & Bruno Gaujal (2010): A mean field model of work stealing in large-scale systems. In Vishal
Misra, Paul Barford & Mark S. Squillante, editors: SIGMETRICS, ACM, pp. 13–24. Available at http:
//doi.acm.org/10.1145/1811039.1811042.

[15] Stefania Gnesi & Franco Mazzanti (2011): An Abstract, on the Fly Framework for the Verification of Service-
Oriented Systems. In Martin Wirsing & Matthias M. Hölzl, editors: Rigorous Software Engineering for
Service-Oriented Systems - Results of the SENSORIA Project on Software Engineering for Service-Oriented
Computing, Lecture Notes in Computer Science 6582, Springer, pp. 390–407, doi:10.1007/978-3-642-20401-
2 18.

[16] G. Guirado, T. Hérault, R. Lassaigne & S. Peyronnet (2006): Distribution, Approximation and Probabilistic
Model Checking. In: PDMC 2005. LNCS, vol. 135, Springer, pp. 19–30.

[17] E. M. Hahn, H. Hermanns, B. Wachter & L. Zhang (2009): INFAMY: An Infinite-State Markov Model
Checker. In: CAV09, LNCS, vol. 5643, Springer, pp. 641–64.

[18] H. Hansson & B. Jonsson (1994): A Logic for Reasoning about Time and Reliability. Formal Aspects of
Computing. The International Journal of Formal Methods. Springer-Verlag 6(5), pp. 512–535.

[19] T. Hérault, R. Lassaigne, F. Magniette & S. Peyronnet (2004): Approximate Probabilistic Model Checking.
In: VMCAI04. LNCS, vol. 2937, Springer, pp. 73–84.

[20] Gerard J. Holzmann (2004): The SPIN Model Checker - primer and reference manual. Addison-Wesley.

http://doi.ieeecomputersociety.org/10.1109/LICS.1995.523273
http://doi.ieeecomputersociety.org/10.1109/LICS.1995.523273
http://dx.doi.org/10.1007/978-3-642-32940-1_24
http://dx.doi.org/10.1007/978-3-642-32940-1_24
http://dx.doi.org/10.1016/j.ic.2015.03.002
http://dx.doi.org/10.1214/07-PS121
http://doi.acm.org/10.1145/1811039.1811042
http://doi.acm.org/10.1145/1811039.1811042
http://dx.doi.org/10.1007/978-3-642-20401-2_18
http://dx.doi.org/10.1007/978-3-642-20401-2_18

D. Latella, M. Massink 17

[21] D. Huynh & L. Tian (1992): On some equivalence relations for probabilistic processes. Fundamenta Infor-
maticae 17, pp. 211–234.

[22] A. Kolesnichenko, A. Remke & P.-T. de Boer (2012): A logic for model-checking of mean-field models.
Technical Report TR-CTIT-12-11, http://doc.utwente.nl/80267/.

[23] A. Kolesnichenko, A. Remke & P.-T. de Boer (2013): A logic for model-checking of mean-field models. In:
DSN13.

[24] Kim G. Larsen & Axel Legay (2016): Statistical Model Checking: Past, Present, and Future. In Tiziana Mar-
garia & Bernhard Steffen, editors: Leveraging Applications of Formal Methods, Verification and Validation:
Foundational Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October
10-14, 2016, Proceedings, Part I, Lecture Notes in Computer Science 9952, pp. 3–15, doi:10.1007/978-3-
319-47166-2 1.

[25] D. Latella (1983): Comunicazione basata su proprietà nei sistemi decentralizzati. [Property-based inter-
process communication in decentralized systems] Graduation Thesis. Istituto di Scienze dell’Informazione.
Univ. of Pisa, Italy (in italian).

[26] D. Latella, M. Loreti & M. Massink (2014): On-the-fly Fast Mean-Field Model-Checking. In M. Abadi
& A. Lluch Lafuente, editors: Trustworthy Global Computing, 4th International Symposium, TGC 2013,
Buenos Aires, Argentina, August 30-31, 2013, Revised Selected Papers, LNCS 8358, Springer, pp. 297–314.
DOI:10.1007/978-3-319-05119-2 17, ISBN 978-3-319-05118-5 (print), 978-3-319-05119-2 (on-line), ISSN
0302-9743 .

[27] D. Latella, M. Loreti & M. Massink (2014): On-the-fly Probabilistic Model Checking. In I. Lanese &
A. Sokolova, editors: Proceedings of the 7th Interaction and Concurrency Experience (ICE 2014), June 6,
2014, Berlin, Germany, EPTCS, ISSN: 2075-2180, http://cgi.cse.unsw.edu.au/ rvg/eptcs/ 166,
pp. 45–59. ISSN: 2075-2180, DOI:10.4204/EPTCS.166.6 .

[28] D. Latella, M. Loreti & M. Massink (2015): On-the-fly PCTL fast mean-field approximated model-checking
for self-organising coordination. Science of Computer Programming. Elsevier 110, pp. 23–50. DOI:
10.1016/j.scico.2015.06.009; ISSN: 0167-6423.

[29] Jean-Yves Le Boudec, David McDonald & Jochen Mundinger (2007): A Generic Mean Field Convergence
Result for Systems of Interacting Objects. In: QEST07, IEEE Computer Society Press, pp. 3–18. Available
at http://doi.ieeecomputersociety.org/10.1109/QEST.2007.3. ISBN 978-0-7695-2883-0.

[30] M. Loreti & J. Hillston (2016): Modelling and Analysis of Collective Adaptive Systems with CARMA and its
Tools. In M. Bernardo, R. De Nicola & J. Hillston, editors: Formal Methods for the Quantitative Evaluation
of Collective Adaptive Systems, chapter 4, LNCS 9700, Springer-Verlag, pp. 83–119. DOI: 10.1007/978-3-
319-34096-8 4, ISBN 978-3-319-34095-1 (print), 978-3-319-34096-8 (online), ISSN 0302-9743.

http://dx.doi.org/10.1007/978-3-319-47166-2_1
http://dx.doi.org/10.1007/978-3-319-47166-2_1
http://doi.ieeecomputersociety.org/10.1109/QEST.2007.3

18 Designing Attribute-based FlyFast

A Appendix

Proof of Proposition 1
⇐: Trivial.
⇒:
We first prove that a = b:
∀m1, . . . ,mS.A(m1, . . . ,mS) = B(m1, . . . ,mS)

⇒ {Logic}

A(0, . . . ,0) = B(0, . . . ,0)

⇒ {Def. of A(m1, . . . ,mS) and B(m1, . . . ,mS)}

a = b

Now we prove that aii = bii for i = 1, . . . ,S:

∀m1, . . . ,mS.A(m1, . . . ,mS) = B(m1, . . . ,mS)

⇒ {Take the S− tuple (m̄1, . . . , m̄S) where m̄k = 1 if k = i and 0 otherwise}

A(m̄1, . . . , m̄S) = B(m̄1, . . . , m̄S)

⇒ {Def. of A(m1, . . . ,mS) and B(m1, . . . ,mS)}

aii +a = bii +b

⇒ {a = b (see above)}

aii = bii

Finally we prove that ai j = bi j, for i, j = 1, . . . ,S, j > i:

∀m1, . . . ,mS.A(m1, . . . ,mS) = B(m1, . . . ,mS)

⇒ {(m̃1, . . . , m̃S) where m̃k = 0.5 if k ∈ {i, j} and 0 otherwise}

A(m̃1, . . . , m̃S) = B(m̃1, . . . , m̃S)

⇒ {Def. of A(m1, . . . ,mS) and B(m1, . . . ,mS)}

0.25aii +0.25ai j +0.25a j j +a = 0.25bii +0.25bi j +0.25b j j +b

⇒ {a = b (see above)}

0.25aii +0.25ai j +0.25a j j = 0.25bii +0.25bi j +0.25b j j

⇒ {Algebra}

aii +ai j +a j j = bii +bi j +b j j

⇒ {aii = bii and a j j = b j j (see above)}

ai j = bi j •

Submitted to:
QAPL 2017

© J. Lidman & J. Svenningsson
This work is licensed under the
Creative Commons Attribution License.

Bridging static and dynamic program analysis
using fuzzy logic

Jacob Lidman & Josef Svenningsson
Chalmers University of Technology

{lidman, josefs}@chalmers.se

Static program analysis is used to summarize properties over all dynamic executions. In a unifying
approach based on 3-valued logic properties are either assigned a definite value or unknown. But in
summarizing a set of executions, a property is more accurately represented as being biased towards
true, or towards false. Compilers use program analysis to determine benefit of an optimization. Since
benefit (e.g., performance) is justified based on the common case understanding bias is essential in
guiding the compiler. Furthermore, successful optimization also relies on understanding the quality
of the information, i.e. the plausibility of the bias. If the quality of the static information is too low
to form a decision we would like a mechanism that improves dynamically.

We consider the problem of building such a reasoning framework and present the fuzzy data-flow
analysis. Our approach generalize previous work that use 3-valued logic. We derive fuzzy extensions
of data-flow analyses used by the lazy code motion optimization and unveil opportunities previous
work would not detect due to limited expressiveness. Furthermore we show how the results of our
analysis can be used in an adaptive classifier that improve as the application executes.

1 Introduction

How can one reconcile static and dynamic program analysis? These two forms of analysis complement
each other: static analysis summarizes all possible runs of a program and thus provide soundness guaran-
tees, while dynamic analysis provides information about the particular runs of a program which actually
happen in practice and can therefore provide more relevant information. Being able to combine these two
paradigms has applications on many forms on analyses, such as alias analysis [16, 21] and dependence
analysis [18].

Compilers use program analysis frameworks to prove legality as well as determining benefit of trans-
formations. Specifications for legality are composed of safety and liveness assertions (i.e. universal and
existentially quantified properties), while specifications for benefit use assertions that hold in the com-
mon case. This reason for adopting the common case is that few transformations improve performance
in general (i.e., for every input, environment). Similarly most transformations could potentially improve
performance in a least one case. As such, compiler optimizations are instead motivated based on (an
approximation of) the majority case, i.e. the (weighted) mean. While determining legality has improved
due to advances in the verification community the progress in establishing benefit has been slow.

In this paper we introduce fuzzy data-flow analysis, a framework for static program analysis based on
fuzzy logic. The salient feature of our framework is that it can naturally incorporate dynamic information
while still being a static analysis. This ability comes thanks to a shift from “crisp” sets where membership
is binary, as employed in conventional static analysis, to fuzzy sets where membership is gradual.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Bridging static and dynamic program analysis using fuzzy logic

We make the following contributions:
• Section 3 introduces our main contribution, the fuzzy data-flow framework.
• Section 4 demonstrates the benefit of our framework by presenting a generalization of a well-

known code motion algorithm and we show how this generalization provides new opportunities
for optimizations previous approaches would not discover.

• Section 4 shows how fuzzy logic can benefit program analysis by (1) using second-order fuzzy
sets to separate uncertainty in data-flow and control-flow and hence improve an inter-procedural
analysis and (2) using fuzzy regulators to refine the results of our static analysis, hence improving
the precision dynamically.

2 Preliminaries

We introduce and define fuzzy sets and the operators that form fuzzy logic. These concepts will be used
in Section 3 to define the transfer functions of our data-flow analysis.

2.1 Fuzzy set

Elements of a crisp set1 are either members or non-members w.r.t to a universe of discourse. A fuzzy set
(FS) instead allow partial membership denoted by a number from the unit interval [0,1]. The membership
degree typically denotes vagueness. The process to convert crisp membership to fuzzy grades is called
fuzzification and the inverse is called defuzzification. Following Dubois et al. [9, 8] let S be a crisp
set and µ : S 7→ [0,1] a membership function (MF) then 〈S,µ〉 is a fuzzy set. As a convention, if S is
understood from context we sometimes refer to µ as a fuzzy set. The membership function formalizes
the fuzzification. Fuzzy sets are ordered point-wise, i.e. (S,µA)≤ (S,µB)⇔∀s ∈ S : µA(s)≤ µB(s).

We can accommodate some notion about uncertainty of vagueness by considering a type-2 fuzzy
set where the membership degree itself is a fuzzy set. Type-2 FS (T2FS) membership functions are
composed of a primary (Js) and secondary (µ) membership {〈(s,u),µ(s,u)〉 | s ∈ S,u ∈ Js ⊆ [0,1]}.
Here uncertainty is represented by the secondary membership that define the possibility of the primary
membership. When for each x and u, it holds µ(x,u) = 1 the T2FS is called an interval T2FS. Gehrke
et al. [10] showed that this can equivalently be described as an interval valued fuzzy sets (IVFS) where
µ : S→{[l,u] |⊥ ≤ l ≤ u≤>}. IVFS are a special case of lattice valued fuzzy sets (L-fuzzy sets) where
the membership domain forms a lattice over [0,1]. Defuzzification of T2FS often proceeds in two phases.
The first phase applies type reduction to transform the T2FS to a type-1 FS (T1FS). The second phase
then applies a type-1 defuzzification.

2.2 Fuzzy logic

Fuzzy logic defines many-valued formal systems to reason about truth in the presence of vagueness.
Contrary to classical logic the law of excluded middle (p∨¬p = >) and the law of non-contradiction
(p∧¬p = ⊥) does not, in general, hold for these systems. Fuzzy logic uses T-, S- and C- norms to
generalize the logical operators ∧, ∨ and ¬. We compactly represent a fuzzy logic by 〈∧̃, ∨̃, ¬̃〉2 which
is sometimes called a De Morgan system [9] because it satisfies a generalization of De Morgans laws:
¬̃(P ∧̃Q)⇔ ¬̃P ∨̃ ¬̃Q and ¬̃(P ∨̃Q)⇔ ¬̃P ∧̃ ¬̃Q.

1In the context of fuzzy logic, crisp or Boolean set refer to a classical set to avoid confusion with fuzzy sets.
2Although one would expect the definition of a fuzzy logic to include a “fuzzy implication” operator in this work we do not

consider it.

J. Lidman & J. Svenningsson 3

Fuzzy logic T-norm S-norm C-norm
1 Min-Max min(x,y) max(x,y) 1− x
2 Algebraic Sum-product xy x+ y− xy 1− x
3 Lukasiewicz max(x+ y−1,0) min(x+ y,1) 1− x

4 Nilpotent

{
min(x,y) x+ y > 1
0 otherwise

{
max(x,y) x+ y < 1
1 otherwise

1− x

Table 1: Common instantiations of fuzzy logics
Definition 1. Let U be a binary function [0,1]2→ [0,1] that is commutative, associative and increasing
and has an identity element e ∈ [0,1]. If e = 1 then U is a Triangular norm (T-norm) and if e = 0 then
U is a Triangular conorm (S-norm)3.

Definition 2. A C-norm is a unary function n : [0,1]→ [0,1] that is decreasing, involutory (i.e., n(n(x))=
x) with boundary conditions (i.e, n(0) = 1,n(1) = 0).

Standard examples of fuzzy logics are shown in Table 1 [9, 8]. Examples 1-3 are special cases (and
limits) of the Frank family of fuzzy logics that are central to our work and formally defined in Definition
3.

Definition 3. Let s ∈ [0,1]∪{∞} then the Frank family of T-norms is defined by:

T s(x,y) =

min(x,y) s = 0
xy s = 1
max(x+ y−1,0) s = ∞

logs

(
1+ (sx−1)(sy−1)

s−1

)
otherwise

The set of intervals in [0,1] forms a bounded partial order 〈I,v,>,⊥〉4 where [lx,ux]≤ [ly,uy]⇔ (lx ≤ ly)∧
(ux ≤ uy) ,>= [1,1] and ⊥= [0,0]. As per Gehrke et al. [10] we can point-wise lift a T1FS fuzzy logic
〈∧̃, ∨̃, ¬̃〉 to a IVFS fuzzy logic, i.e., [lx,ux]� [ly,uy] = [lx� ly,ux�uy],�̂ ∈ {∧̃, ∨̃} and ¬̃[l,u] = [¬̃u, ¬̃ l].

3 Fuzzy data-flow analysis

Static data-flow analyses deduce values of semantic properties that are satisfied the dynamics of the appli-
cation. The dynamics is formalized as a system of monotone transfer functions and collector functions.
Transfer functions describe how blocks alter the semantic properties. Collectors functions merge results
from different, possibly mutual exclusive, branches of the application. The solution of the analysis is
obtained through Kleene iteration and is a unique fixed-point of the system of equations. In a classical
framework the domain of the values is binary, i.e. either true (1) or false (0). The interpretation of these
values depends on the type of analysis. The value true means that the property can possibly hold in a
may-analysis (i.e., it is impossible that the value is always false) while it means that the property always
holds in a must-analysis. The value false could mean either the opposite of true or that the result is
inconclusive.

Our fuzzy data-flow analysis instead computes the partial truth of the property, i.e. values are el-
ements of [0,1]. A value closer to 0 means that the property is biased towards false and vice versa.
Furthermore the transfer functions are logical formulas from a Frank family fuzzy logic and the collector

3The general concept, allowing any e ∈ [0,1], is called a uninorm [9] and is either orlike (i.e., U(0,1) = U(1,0) = 1) or
andlike (i.e., U(0,1) =U(1,0) = 0). Our work does not require the full generality.

4This should not be confused with the partial order used in the interval abstraction.

4 Bridging static and dynamic program analysis using fuzzy logic

functions are weighted average functions where the constant α is determined prior to performing the
analysis. In contrast to the classical framework Kleene iteration proceeds until the results differ by a
constant ε which is the maximal error allowed by the solution. The error can be made arbitrarily small.

This section introduces the fuzzy data-flow framework and we prove termination using continuity
properties and Banach’s fixed-point theorem. Section 4 then presents an example analysis to demonstrate
the benefit of the framework. The analysis is performed on a weighted flow-graph G = 〈V,E,α〉 where
V is a set of logical formulas (denoting the transfer function of each block), E ⊆ V ×V is a set of
edges (denoting control transfers) and αe ∈ [0,1] denotes the normalized contribution for each edge e.
As a running example we will use Figure 1 (left) which shows a flow-graph with four nodes and their
corresponding logical formula. The flow graph has four control edges denoting contributions between
nodes. For instance, Block 1 (B1) receives 0.1 of its contribution from B0 and 0.9 from B2, i.e. α〈B0,B1〉=
0.1 and α〈B2,B1〉 = 0.9.

Out = 0.0B0

Out = InB1

Out = 0.8∧ (¬In∨¬0.7)

B2

Out = In
B3

0.1

1.00.9

1.0

Out(B0) = 0.0
Out(B1) = 0.1Out(B0)+0.9Out(B2)
Out(B2) = min(0.8,max(1−Out(B1),0.3))
Out(B3) = Out(B1)

Figure 1: Example flow-graph (left) and its corresponding equation system (middle) and the analysis
result and error as a function of iteration (right)

Definition 4. Let P be a finite set of properties and V S : P 7→ [0,1] a valuation for each property.
We use [[φ]] (V S) to denote the interpretation of the fuzzy formula φ given a V S. Given a flow-graph
G = 〈V,E,α〉 with a unique start node vstart the map GS : V 7→ V S describes the value of each property
at each node and a fuzzy data-flow analysis is a Kleene iteration of F : GS 7→ GS:

F(S) = λv.

S(vstart) v = vstart

∑
〈w,v〉∈E

α〈w,v〉[[v]] (S(w)) otherwise

Figure 1 (middle) shows the equation system, as implied by Definition 4, interpreted in a min-max fuzzy
logic for the example flow-graph. The red colored text corresponds to the collector function, i.e. the
weighted average, and the normal text is the interpretation of the logical formula. In order to prove
termination of a fuzzy analysis we need to introduce a continuity property.

Definition 5. A function f : [0,1]n 7→ [0,1] is K-Lipschitz continuous5 iff ∀x,h : | f (~x−~h)− f (~x)|1 ≤
K|~h|1. Where |~x|1 is l1-norm (i.e., the absolute value) of~x6. If 0 ≤ K < 1 then f is called a contraction
mapping and if 0≤ K ≤ 1 then f is called a non-expansive mapping.

5Our definition restricts the domain and metric of both metric spaces (i.e., for the domain and co-domain of f) compared to
the more general, and common, definition of a Lipschitz continuous function.

6Other lp-norms can be used but only if we restrict the logic to the min-max fuzzy logic [15].

J. Lidman & J. Svenningsson 5

In a sequence of applications of a contraction mapping the difference between two consecutive ap-
plications will decrease and in the limit reach zero. By imposing a bounded error we guarantee that this
sequence terminates in a bounded amount of time. The analysis error and result of B2 as a function of
iteration for the example is shown in Figure 1 (right). Note that the error (red line) is decreasing and the
value of B2 (blue line) tends towards a final value. We next proceed to prove that any fuzzy data-flow
analysis iteratively computes more precise results and terminates in a bounded amount of time for a finite
maximum error 1

2q from some q∈N−{0}. We let [0,1]q denote the maximal congruence set of elements
from [0,1] that are at least 1

2q apart, i.e. [0,1]q = { i
2q | 0≤ i≤ 2q}. The set of intervals on [0,1], i.e. I are

defined analogously. For this we prove the non-expansive property of fuzzy formulas.

Theorem 1. Let x,y,C,wi ∈ [0,1]q, for some i∈N, fi(~x) : [0,1]nq 7→ [0,1]q be 1-Lipschitz and gi(~x) : [0,1]nq 7→
[0,1]q be Ki-Lipschitz.

• Functions x+ y, x− y, xy, min(x,y) and abs(x) are 1-Lipschitz. Constants are 0-Lipschitz.
• If ∑

N−1
i=0 wi = 1 then ∑

N−1
i=0 wi fi(~x) is 1-Lipschitz.

• The composition ga ◦gb is KaKb-Lipschitz.
Finally,

• Formulas defined in a Frank family Fuzzy logic are 1-Lipschitz.
• If F : In

q→ Iq satisfies ∀x ∈ In
q : y ∈ x⇒ f (y) ∈ F(x) then F is 1-Lipschitz.

In summary, as per Theorem 1:
• Transfer functions in a Frank family fuzzy logic are non-expansive mappings.
• S(vstart) is constant and hence a contraction mapping.
• The composition of 1) Two non-expansive functions is a non-expansive function and 2) A non-

expansive and a contraction function is a contraction function.
As the analysis is performed on the unit interval which together with the l1-norm forms a complete metric
space we can guarantee termination by Banach’s fixed-point theorem.

Theorem 2 (Banach fixed-point theorem). Let (X ,d) be a complete metric space and f : X 7→ X a
contraction. Then f has a unique fixed-point x∗ in X.

This concludes our development of fuzzy data-flow analysis.

4 Lazy code motion

Improving performance often means removing redundant computations. Computations are said to be
fully redundant, but not dead, if the operands at all points remain the same. For two such computations it
is enough to keep one and store away the result for later. We can eliminate this redundancy using (global)
common sub-expression elimination (GCSE). Furthermore a computation that does not change on some
paths is said to be partially redundant. Loop invariant code motion (LICM) finds partially redundant
computations inside loops and move these to the entry block of the loop. Lazy code motion is a compiler
optimization that eliminate both fully and partially redundant computations, and hence subsumes both
CSE and LICM. Knoop-Rüthing-Steffen (KRS) algorithm [13, 7] performs LCM in production compil-
ers such as GCC when optimizing for speed. It consists of a series of data-flow analyses and can be
summarized in these four steps:

1. Solve a very busy expression7 and an available expression data-flow problem [17].
2. Introduce a set that describes the earliest block where an expression must be evaluated.

7Knoop et al. [13] refer to this as anticipatable expression data-flow problem.

6 Bridging static and dynamic program analysis using fuzzy logic

void diffPCM () {
b = 0 , A = 0 , B = 0 ;
f o r (i = 0 ; i < N; i ++)

i f (i n [i] != b)
b = abs (i n [i]−b) ;

B = Trans fo rm (b) ;
A = I n c R a t e (i) ;
o u t [i] = A*B ;

}

B0

i < N
B1

in[i] != bB2

b = abs(a[i]-b)
B3

B = Transform(b);
A = IncRate(i);
out[i] = A*B
i = i + 1

B4

B5

N−1
N

1
N

1− p
p

void diffPCM () {
b = 0 , A = 0 , B = 0 ;
f o r (i = 0 ; i < N; i ++)

Update← ANFIS decision of updating b
Leave← ANFIS decision of leaving b
i f (i n [i] != b)

b = abs (i n [i]−b) ;
If Update < Leave: Decision error!

e l s e
If Update > Leave: Decision error!

B = Trans fo rm (b) ;
A = I n c R a t e (i) ;
o u t [i] = A*B ;

}

Figure 2: diffPCM function (left), the corresponding flow-chart (middle) and the version used in Section
4.3 which is annotated with ANFIS classifier invocations (right)

3. Determine the latest control flow edge where the expression must be computed.
4. Introduce Insert and Delete sets which describe where expressions should be evaluated.

The target domain of the analysis is the set of static expressions in a program. Input to the analysis is
three predicates determining properties about the expressions in different blocks:

• An expression “e” is downward exposed if it produces the same result if evaluated at the end of the
block where it is defined. We use DEE(b,e) to denote if “e” is downward exposed in block “b”.

• An expression “e” is upward exposed if it produces the same result if evaluated at the start of the
block where it is defined. We use UEE(b,e) to denote this.

• An expression “e” is killed in block “b” if any variable appearing in “e” is updated in “b”. We use
KILL(b,e) to denote this.

Very busy expression analysis is a backward-must data-flow analysis that depends on UEE and KILL and
computes the set of expressions that is guaranteed to be computed at some time in the future. Similarly
Available expression analysis is a forward-must data-flow analysis that depends on DEE and KILL and
deduces the set of previously computed expressions that may be reused. The fixed-point system of these
two analyses are shown in Figure 3. It is beyond the scope of this paper to further elaborate on the details
of these analyses, the interested reader should consider Nielson et al. [17]. Here the LCM algorithm and
the data-flow analyses it depends on, are applications we use to demonstrate the benefit of our framework.
As such a rudimentary understanding is sufficient.

Consider the simplified differential pulse-code modulation routine diffPCM in Figure 2 (left). We
assume that N and the relative number of times block B3 (denoted p) is statically known8. In each
iteration diffPCM invokes the pure functions Transform, to encode the differential output, and IncRate
to get a quantification rate. We use the KRS-LCM algorithm to determine if these invocations can be
made prior to entering the loop and contrast this to a situation where the data-flow analyses are performed
in the fuzzy framework. As we will show the “fuzzy KRS-LCM” allows us to uncover opportunites the
classical KRS-LCM would miss.

8In this demonstration we let p = 0.999 and N = 1000, but our conclusions hold as N increases and p approaches 1.

J. Lidman & J. Svenningsson 7

Knoop-Ruthing-Steffen LCM
Available
expression

{
AvIn(b) =

∧
b′∈Pred(b) AvOut(b′),b 6= B0

AvOut(b) = DEE(b)∨ [AvIn(b)∧¬Kill(b)]

Very busy
expression

{
AnIn(b) =

∧
b′∈Succ(b) AnOut(b′),b 6= B5

AnOut(b) =UEE(b)∨ [AnIn(b)∧¬Kill(b)]

(1)

Earliest(i, j) =

{
AnIn(j)∧¬AvOut(i)∧ [Kill(i)∨AnOut(i)] i 6= B0
AnIn(j)∧¬AvOut(B0) otherwise

(2)

{
LaterIn(j) =

∧
j′∈Pred(j) LaterOut(:, j), j 6= B0

LaterOut(i, j) = Earliest(i, j)∨ [LaterIn(i)∧¬UEE(i)]
(3)

Insert(i, j) = LaterOut(j)∧¬LaterIn(j)
Delete(k) =UEE(k)∧¬LaterIn(k),k 6= B0(4)

Block DEE UEE KILL
6543210 6543210 6543210

B0 0000000 0000000 1111111
B1 0000001 0000001 0000000
B2 0000010 0000010 0000000
B3 0000000 1000000 1100010
B4 0101000 0110100 1011111
B5 0000000 0000000 0000000

Edge Insert Block Delete
6543210 6543210

B0→B1 0000000 B0 0000000
B1→B5 0000000 B1 0000000
B1→B3 0000000 B2 0000000
B2→B3 0000000 B3 0000000
B2→B4 0000000 B4 0000000
B3→B4 0000000 B5 0000000
B4→B1 0000000

Block DEE
6 5 4 3 2 1 0

B0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B1 0.0 0.0 0.0 0.0 0.0 0.0 1.0
B2 0.0 0.0 0.0 0.0 0.0 1.0 0.0
B3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B4 0.0 1.0 0.0 1.0 0.0 0.0 0.0
B5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Block UEE
6 5 4 3 2 1 0

B0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B1 0.0 0.0 0.0 0.0 0.0 0.0 1.0
B2 0.0 0.0 0.0 0.0 0.0 1.0 0.0
B3 1.0 0.0 0.0 0.0 0.0 0.0 0.0
B4 0.0 1.0 1.0 0.0 1.0 0.0 0.0
B5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Block KILL
6 5 4 3 2 1 0

B0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
B1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B3 1.0 1.0 0.0 0.0 0.0 1.0 0.0
B4 1.0 0.0 1.0 1.0 1.0 1.0 1.0
B5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Edge Insert
6 5 4 3 2 1 0

B0→B1 0.001 0.998 0.001 0.000 0.001 0.001 0.000
B1→B5 0.001 0.001 0.001 0.000 0.001 0.001 0.000
B1→B2 0.001 0.001 0.001 0.000 0.001 0.001 0.000
B2→B3 0.001 0.001 0.001 0.000 0.001 0.000 0.000
B2→B4 0.001 0.001 0.001 0.000 0.001 0.000 0.000
B3→B4 0.000 0.998 0.001 0.000 0.001 0.000 0.000
B4→B1 0.001 0.000 0.001 0.000 0.001 0.001 0.000

Block Delete
6 5 4 3 2 1 0

B0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
B1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
B2 0.000 0.000 0.000 0.000 0.000 0.001 0.000
B3 0.001 0.000 0.000 0.000 0.000 0.000 0.000
B4 0.000 0.998 0.001 0.000 0.001 0.000 0.000
B5 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Expression abs(a[i]-b) Transform(b) IncRate(i) A*B i+1 in[i] != b i≤ N
Index 6 5 4 3 2 1 0

Figure 3: Knoop-Rüthing-Steffen LCM formulation (middle) using classical (left) and fuzzy (right/bot-
tom) data-flow analysis

8 Bridging static and dynamic program analysis using fuzzy logic

4.1 Type-1 static analysis

The data-flow problems of the KRS algorithm use expressions as domain. The mapping between expres-
sions of diffPCM and indexes are listed in Figure 3 (bottom) together with the values of DEE, UEE and
KILL for each block (top right). The classical KRS algorithm conclude that both calls must be evaluated
in B4 (bottom light gray box, “Delete” matrix, Column 4 and 5).

For the fuzzy data-flow analyses we use the Type-1 Min-Max fuzzy logic. The corresponding fuzzy
sets of DEE, UEE and KILL are given in Figure 3 (top dark gray box). Step (1) of the fuzzy KRS-LCM
is hence the fixed-point to below system of equations:

Available expression
analysis system

AvOut(B0) = 0.0
AvOut(B1) = DEE(B1)∨

([1
N AvOut(B0)+ N−1

N AvOut(B4)
]
∧¬Kill(B1)

)
AvOut(B2) = DEE(B2)∨ (AvOut(B1)∧¬Kill(B2))
AvOut(B3) = DEE(B3)∨ (AvOut(B2)∧¬Kill(B3))
AvOut(B4) = DEE(B4)∨ ([pAvOut(B2)+(1− p)AvOut(B3)]∧¬Kill(B4))
AvOut(B5) = DEE(B5)∨ (AvOut(B1)∧¬Kill(B4))

Very busy expression
analysis system

AnOut(B0) =UEE(B0)∨ (AnOut(B1)∧¬Kill(B1))
AnOut(B1) =UEE(B1)∨

([N−1
N AnOut(B2)+ 1

N AnOut(B5)
]
∧¬Kill(B1)

)
AnOut(B2) =UEE(B2)∨ ([pAnOut(B4)+(1− p)AnOut(B3)]∧¬Kill(B2))
AnOut(B3) =UEE(B3)∨ (AnOut(B4)∧¬Kill(B3))
AnOut(B4) =UEE(B4)∨ (AnOut(B1)∧¬Kill(B4))
AnOut(B5) = 0.0

Steps (2) and (4) introduce (constant) predicates and are performed outside the analysis framework.
Step (3) is done similarly to step (1). Figure 3 (bottom dark gray box) shows the result from step (4).
In contrast to the classical LCM the result implies that it is very plausible (0.998) that we can delete the
invocation of Transform (“Delete” matrix, Column 5) from block B4 and instead add it at the end of B0
and B3 (or start of B1 and B4). However, result for the invocation of IncRate remains. This is because
the invocation depends on the value of i which is updated at the end of B4.

4.2 Type-2 static analysis

To increase data-flow analysis precision a function call is sometimes inlined at the call site. The im-
provement can however be reduced if the control-flow analysis is inaccurate and multiple targets are
considered for a particular call site. We show how the uncertainty in control-flow and data-flow can be
quantified in two different dimensions using type-2 interval fuzzy sets. As per Section 2 we can lift an
arbitrary fuzzy predicate to intervals. Here we assume no knowledge about the relative number of calls
to each target and treat the different calls non-deterministically.

We assume two different IncRate functions, as in Figure 4 (left), have been determined as targets.
Their respective UEE and Kill entries are the same but since i is updated at the end of block B4 their DEE
entry will differ. The result of IncRate_1 depends on the variable i and therefore DEE(B41) = 0101000,
in contrast the entry for IncRate_2 is DEE(B42) = 0111000, where 0 = [0,0] and 1 = [1,1]. The new
entry for block B4 is given by DEE(B4) = DEE(B41) ∨̃DEE(B42) = 〈0,1, [0,1],1,0,0,0〉. The new
Kill, DEE and UEE sets are given in Figure 4 (right).

Applying the fuzzy KRS-LCM, but with Type-1 min-max fuzzy logic lifted to Interval type-2 min-
max fuzzy logic gives the values of Delete and Insert for expression IncRate(i) in Figure 4 (right).

J. Lidman & J. Svenningsson 9

B = Transform(b);
... = IncRate(i);

A = ...
out[i] = A*B
i = i + 1

i n t IncRate 1 (i n t i) {
re turn 2* i ;

}

i n t IncRate 2 (i n t i) {
re turn 1 ;

}

Block Kill DEE UEE
6 [1.0,1.0] [0.0,0.0] [0.0,0.0]
5 [0.0,0.0] [1.0,1.0] [1.0,1.0]
4 [1.0,1.0] [0.0,1.0] [1.0,1.0]
3 [1.0,1.0] [1.0,1.0] [0.0,0.0]
2 [1.0,1.0] [0.0,0.0] [1.0,1.0]
1 [1.0,1.0] [0.0,0.0] [0.0,0.0]
0 [1.0,1.0] [0.0,0.0] [0.0,0.0]
Edge Insert Block Delete
B0→B1 [0.001,0.999] B0 [0.000,0.000]
B1→B5 [0.001,0.999] B1 [0.000,0.000]
B1→B3 [0.001,0.999] B2 [0.000,0.000]
B2→B3 [0.001,0.999] B3 [0.000,0.000]
B2→B4 [0.001,0.999] B4 [0.002,0.999]
B3→B4 [0.001,0.999] B5 [0.000,0.000]
B4→B1 [0.000,0.999]

Figure 4: Implementations of IncRate inlined in block B4 (left); DEE, UEE and Kill vectors of block
B4 and Delete Insert analysis result for expression IncRate(i) (right)

The result for invoking IncRate prior to the loop is [0.001,0.999] as opposed to 0.001 from the Type-1
analysis in Section 4.1. The added dimension in the result of the type-2 fuzzy analysis allows us to
differentiate uncertain results from pessimistic results. In the given example we showed that the result of
Section 4.1 is a pessimistic over-generalization and that the two paths need to be considered seperately
to increase precision.

4.3 Hybrid analysis

The result from a fuzzy data-flow analysis is a set of fuzzy membership degrees. This section shows how
the result can automatically be improved following the static analysis using a fuzzy regulator/classifier, if
more specific information is provided at a later point. The classifier, a Takagi-Sugeno Adaptive-Network-
based fuzzy inference system (TS-ANFIS) [11, 12] shown in Figure 5, is composed of five layers:

1. Lookup fuzzy membership degree of the input value.
2. Compute the firing strength of a rule, i.e. conjunction of all membership degrees from each rule.
3. Normalize the firing strengths, i.e., w̄i = wi/∑ j w j.
4. Weight the normalized firing strength to the consequent output of the rule fi(x).
5. Combine all rule classifiers, i.e. f = ∑i w̄i fi .

This classifier uses a polynomial (i.e., the consequent part of the adaptive IF-THEN rules) to decide
the output membership. The order of the TS-ANFIS is the order of the polynomial. The classification
accuracy of the TS-ANFIS can be improved online/offline by fitting the polynomial to the input data. For
a first-order TS-ANFIS this can be implemented as follows:

• (Offline) (Affine) Least square (LS) optimization [11] is a convex optimization problem that finds
an affine function (i.e., y = a0 +∑

n
i=1 aixi) which minimizes ||A[1;X]−Y ||22 where X and Y are the

input and output vectors of the training set.

• (Online) Least mean square (LMS) [11] is an adaptive filter that gradually (in steps of a given
constant µ) minimizes E

[
|y− f (x)|2

]
, where 〈x,y〉 is an input/output sample.

To exemplify the functionality of the TS-ANFIS we consider the classification of~x = 〈0.6,0.2〉 using the
two rule TS-ANFIS from Figure 5 (left). Let f1(~x) = 0.2x0−0.43x1, f2(~x) = 0.1x1+0.5 and membership
functions be given as in Figure 5 (right). The membership degrees are marked in the figure as µA0(x0) =

10 Bridging static and dynamic program analysis using fuzzy logic

IF x0 is A0 and x1 is B0 THEN f = c(1,0)+ c(1,1)x0 + c(1,2)x1
IF x0 is A1 and x1 is B1 THEN f = c(2,0)+ c(2,1)x0 + c(2,2)x1

x0

x1

A0

A1

B0

B1

∏

∏

N

N

x0x1

x0x1

∑ f

w1

w2

w̄1

w̄2

w̄1 f1

w̄2 f2

µA0 µB0

µA1 µB1

0.6
0.5

x0 = 0.6

0.286

x1 = 0.2
0.1

Figure 5: First-order Takagi-Sugeno ANFIS with two rules and two variables (left) and four example
fuzzy sets (right)

0.6, µB0(x1) = 0.5 for the first rule and µA1(x0) = 0.286, µB1(x0) = 0.1 for the second rule. Hence the
weight of the first rule (i.e., w1) is 0.6∧ 0.5 = 0.5 and the second rule (i.e., w2) is 0.286∧ 0.1 = 0.1.
The normalized weights are then w̄1 = 0.833 and w̄1 = 0.167. As the consequence functions output
f1(~x) = 0.034 and f2(~x) = 0.52 we produce the prediction 0.833 f1(~x)+0.167 f2(~x) = 0.115.

We return to the diffPCM function and again consider if we can invoke Transform(b) prior to
entering the loop. We saw in Section 4.1 that the fuzzy membership degree was 0.998. To improve
classification accuracy we let the TS-ANFIS also use the i variable and the first input value (i.e., in[0]).
These variables were not part of the analysis and so we conservatively assume the fuzzy membership
degree to be the same for any value of these variables (in our experiments: 1.0). As shown in Figure 2
(right), we inserted calls to compute the ANFIS decision of updating and keeping the variable b constant
in the diffPCM function. If the incorrect decision was made the error was noted and an error rate
computed after handling all input samples.

We consider invoking the diffPCM function on four different input sets. Each input set defined as
10 periods with 25 input values in each period. The input sets (i.e., in[...]) is given in Figure 6
(top). We use the LMS algorithm9 after each incorrect classification and the LS algorithm if the error
rate of a period was larger than or equal to 80%. Note that the values of a period is not always perfectly
representable by a linear classifier and sometimes varies between different periods, although periods are
“similar”. Hence we do not expect the classifier to be monotonically improving with increasing period.
As shown in the result in Figure 6 (bottom) the classification error decreases fast with both period and
input sample. In two cases a small residual error remains after the final period. This show that the TS-
ANFIS can improve the analysis result dynamically and hence increase the accuracy of when Transform
can be invoked prior to entering the loop.

5 Related work

Most systems include elements (e.g., input values, environment state) where information is limited but
probabilistic and/or non-deterministic uncertainty can be formulated. For these systems a most likely or
even quantitative analysis of properties is possible. Often this analysis relies on a probability theory for

9The constant µ for the four different runs was set to 0.001, 0.05, 0.15 and 0.1 respectively.

J. Lidman & J. Svenningsson 11

Sample

0 50 100 150 200 250

In
p

u
t

v
a

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sample

0 50 100 150 200 250
In

p
u

t
v
a

lu
e

0

10

20

30

40

50

60

Sample

0 50 100 150 200 250

In
p

u
t

v
a

lu
e

0

2

4

6

8

10

12

Sample

0 50 100 150 200 250

In
p

u
t

v
a

lu
e

0

5

10

15

20

25

Period

1 2 3 4 5 6 7 8 9 10

E
rr

o
r

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period

1 2 3 4 5 6 7 8 9 10

E
rr

o
r

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period

1 2 3 4 5 6 7 8 9 10

E
rr

o
r

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period

1 2 3 4 5 6 7 8 9 10

E
rr

o
r

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: 10×25 input values (top) and the corresponding classification error rate (bottom)

logical soundness. Cousot and Monerau [3] introduced a unifying framework for probabilistic abstract
interpretation. Much work have since, although perhaps implicitly, relied on their formulation. Often
probabilistic descriptions are known with imprecision that manifests as non-deterministic uncertainty [2].
Adje et al. [1] introduced an abstraction based on the zonotope abstraction for Dempster-Shafer structures
and P-boxes10.

Di Pierro et al. [6] developed a probabilistic abstract interpretation framework and demonstrated an
alias analysis algorithm that could guide the compiler in this decision. They later formulated data-flow
problems (e.g., liveness analysis) in the same framework [5]. An important distinction between their (or
similar probabilistic frameworks) and classical frameworks is the definition of the confluence operator. In
contrast to a classical may- or must framework they use the weighted average. This is similar to the work
by Ramalingam [20] that showed that the meet-over-paths (MOP) solution exists for such confluence
operator with a transfer function defined in terms of min, max and negation (i.e., the Min-max fuzzy
logic). Our work extends this to allow other transfer functions and integrates the static data-flow analysis
with a dynamic refinement mechanism through fuzzy control theory.

6 Conclusion

A major problem for static program analysis is the limited input information and hence the conservative
results. To alleviate the situation dynamic program analysis is sometimes used. Here accurate informa-
tion is available, but in contrast to its static counter-part the results only cover a single or few runs. To
bridge the gap, and find a promising middle-ground, probabilistic/speculative program analysis frame-
works have been proposed. These frameworks can be considered to intersect both by being a static
program analysis that uses dynamic information. We have introduced an abstraction based on fuzzy
sets that supports such analyses. We applied our abstraction to data-flow problems of use for specu-
lative compilation and showed how our analysis unveils opportunities that previous approaches could

10Lower and upper bounds on a cumulative probability distribution functions

12 Bridging static and dynamic program analysis using fuzzy logic

not express and reason about. We furthermore showed that an abstraction based on fuzzy sets admit
mechanisms from fuzzy control theory to enhance the analysis result dynamically allowing for a hybrid
analysis framework.

References
[1] Assale Adje, Olivier Bouissou, Jean Goubault-Larrecq, Eric Goubault & Sylvie Putot (2014): Static Anal-

ysis of Programs with Imprecise Probabilistic Inputs. In: Verified Software: Theories, Tools, Experiments,
Lecture Notes in Computer Science 8164, Springer Berlin Heidelberg, pp. 22–47.

[2] Patrick Cousot & Radhia Cousot (2014): Abstract Interpretation: Past, Present and Future. In: Proceedings
of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,
ACM, pp. 2:1–2:10.

[3] Patrick Cousot & Michaël Monerau (2012): Probabilistic Abstract Interpretation. In: 22nd European Sym-
posium on Programming (ESOP 2012), Lecture Notes in Computer Science 7211, Springer-Verlag, pp. 166–
190.

[4] Jeff Da Silva & J. Gregory Steffan (2006): A Probabilistic Pointer Analysis for Speculative Optimizations.
In: Proceedings of the 12th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XII, ACM, pp. 416–425.

[5] Pierro A Di & H Wiklicky (2013): Probabilistic data flow analysis: a linear equational approach. In:
Proceedings of the Fourth International Symposium on Games, Automata, Logics and Formal Verification,
pp. 150–165.

[6] Alessandra Di Pierro, Chris Hankin & Herbert Wiklicky (2007): A Systematic Approach to Probabilistic
Pointer Analysis. In: Programming Languages and Systems, Lecture Notes in Computer Science 4807,
Springer Berlin Heidelberg, pp. 335–350.

[7] Karl-Heinz Drechsler & Manfred P. Stadel (1993): A Variation of Knoop, RüThing, and Steffen’s Lazy Code
Motion. SIGPLAN Not. 28(5), pp. 29–38.

[8] D. Dubois & H. Prade (1980): Fuzzy sets and systems - Theory and applications. Academic press, New
York.

[9] D. Dubois, H.M. Prade & H. Prade (2000): Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets,
Springer US.

[10] Mai Gehrke, Carol Walker & Elbert Walker (1996): Some comments on interval valued fuzzy sets. Interna-
tional Journal of Intelligent Systems 11(10), pp. 751–759.

[11] J.-S.R. Jang (1993): ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics,
IEEE Transactions on 23(3), pp. 665–685.

[12] Jyh-Shing Roger Jang & Chuen-Tsai Sun (1997): Neuro-fuzzy and Soft Computing: A Computational Ap-
proach to Learning and Machine Intelligence. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[13] Jens Knoop, Oliver Rüthing & Bernhard Steffen (1992): Lazy Code Motion. In: Proceedings of the ACM
SIGPLAN 1992 Conference on Programming Language Design and Implementation, PLDI ’92, ACM, pp.
224–234.

[14] S. Maleki, Yaoqing Gao, M.J. Garzaran, T. Wong & D.A. Padua (2011): An Evaluation of Vectorizing Com-
pilers. In: Parallel Architectures and Compilation Techniques (PACT), 2011 International Conference on,
pp. 372–382.

[15] A. Mesiarov (2007): k-lp-Lipschitz t-norms. International Journal of Approximate Reasoning 46(3), pp. 596
– 604. Special Section: Aggregation Operators.

[16] Markus Mock, Manuvir Das, Craig Chambers & Susan J. Eggers (2001): Dynamic Points-to Sets: A Com-
parison with Static Analyses and Potential Applications in Program Understanding and Optimization. In:

J. Lidman & J. Svenningsson 13

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, PASTE ’01, ACM, pp. 66–72.

[17] Flemming Nielson, Hanne R. Nielson & Chris Hankin (1999): Principles of Program Analysis. Springer-
Verlag New York, Inc.

[18] P.M. Petersen & D.A. Padua (1996): Static and dynamic evaluation of data dependence analysis techniques.
Parallel and Distributed Systems, IEEE Transactions on 7(11), pp. 1121–1132.

[19] Dimitrios Prountzos, Roman Manevich, Keshav Pingali & Kathryn S. McKinley (2011): A Shape Analysis
for Optimizing Parallel Graph Programs. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, ACM, pp. 159–172.

[20] G. Ramalingam (1996): Data Flow Frequency Analysis. In: Proceedings of the ACM SIGPLAN 1996
Conference on Programming Language Design and Implementation, PLDI ’96, ACM, pp. 267–277.

[21] ConstantinoG. Ribeiro & Marcelo Cintra (2007): Quantifying Uncertainty in Points-To Relations. In: Lan-
guages and Compilers for Parallel Computing, Lecture Notes in Computer Science 4382, Springer Berlin
Heidelberg, pp. 190–204.

Appendix A: Omitted proofs

of Theorem 1. Let x,y,C,wi ∈ [0,1], for some i ∈ N, fi(~x) : [0,1]nq 7→ [0,1]q be 1-Lipschitz and gi(~x) :
[0,1]nq 7→ [0,1]q be Ki-Lipschitz.

1. Functions x+ y, x− y, xy, min(x,y) and abs(x) are 1-Lipschitz. Constants are 0-Lipschitz Let
b ∈ [x,x+h] for some 0≤ x≤ x+h≤ 1:

(a) g(x) = abs(x):

|g(x+h)−g(x)|= |abs(x+h)−abs(x)| By definition

= |x+h− x| x,h ∈ [0,1]

≤ 1|h|

(b) g(x,y) = x+ y:

|g(x+h1,y+h2)−g(x,y)|= |((x+h1)+(y+h2))− (x+ y)| By definition

= |h1 +h2|
≤ |h1|+ |h2| Triangle inequality

= 1|h| Distributivity

(c) g(x,y) = x− y:

|g(x+h1,y+h2)−g(x,y)|= |((x+h1)− (y+h2))− (x− y)| By definition

= |h1 +(−1)h2|
≤ |h1|+ |−1||h2| Triangle inequality

= 1|h| Distributivity

(d) g(x,y) = xy:

|g(x+h1,y+h2)−g(x,y)|= |((x+h1)(y+h2))− (xy)| By definition

= |h1y+ xh2|
≤ |h1 +h2| 0≤ x,y≤ 1

≤ |h1|+ |h2| Triangle inequality

= 1|h| Distributivity

14 Bridging static and dynamic program analysis using fuzzy logic

(e) g(x,y) = min(x,y):

|g(x+h1,y+h2)−g(x,y)|= |min(x+h1,y+h2)−min(x,y)| By definition

=

∣∣∣∣(x+h1 + y+h2

2
− |x+h1− y−h2|

2

)
−(

x+ y
2
− |x− y|

2

)∣∣∣∣ min(x,y) =
x+ y

2
− |x− y|

2

≤

∣∣∣∣h1 +h2

2
− |x|+ |−1||y|+ |h1−h2|

2
+

|x|+ |−1||y|
2

∣∣∣∣
=

∣∣∣∣h1 +h2

2
− |h1−h2|

2

∣∣∣∣
= |min(h1,h2)|
≤ |h1 +h2|
= 1|h| Triangle inequality

(f) g(x,y) =C

|g(x+h)−g(x)|= |C−C|= 0≤ 0|h|

2. If ∑
N−1
i=0 wi = 1 then ∑

N−1
i=0 wi fi(~x) is 1-Lipschitz

∣∣∣g(~x+~h)−g(~x)
∣∣∣= ∣∣∣∣∣N−1

∑
i=0

wi f (~x+h)−
N−1

∑
i=0

wi f (~x)

∣∣∣∣∣ By definition

=

∣∣∣∣∣N−1

∑
i=0

wi

(
f (~x+h)− f (~x)

)∣∣∣∣∣ Associativitiy and commutativity

≤

(
N−1

∑
i=0

wiKi

)
|h| Triangle inequality, distributivity and wi ≥ 0

= 1|h| Ki = 1 and ∑
i

wi = 1

3. The composition ga ◦gb is KaKb-Lipschitz g(~x) = fa(~x)◦ fa(~x):

|g(x+h)−g(x)|=
∣∣∣ fa(fb(~x+h))− fa(fb(~x))

∣∣∣ By definition

≤ Ka

∣∣∣ fb(~x+h)− fb(~x)
∣∣∣ Definition 5

≤ KaKb|h| Definition 5

4. Formulas defined in a Frank family Fuzzy logic are 1-Lipschitz. This follows from structural
induction on the height of parse tree of the predicate P(x). By De Morgan’s laws it is enough to
show the induction step for ∨ and ¬.

• Base case:
– v: g(x) = x: |g(x+h)−g(x)|= |x+h− x| ≤ 1|h|.
– > or ⊥: g(x) =C: 1-Lipschitz by 3.

J. Lidman & J. Svenningsson 15

• Induction step:
– ¬φ ≡ 1−φ : 1-Lipschitz from the base case for constants (> and ⊥) and cases 1c and 3

and assumption that φ is 1-Lipschitz.

– φ1∨φ2:

min(x,y) 1-Lipschitz from Theorem 1 case 1e
xy 1-Lipschitz from Theorem 1 case 1d
max(x+ y−1,0) Equal to 1−min(2− x− y,1) using De Morgans law.

This expression is 1-Lipschitz from Theorem 1 case 1c, 1e and 3

5. If F : In
q→ Iq satisfy ∀x ∈ In

q : y ∈ x⇒ f (y) ∈ F(x) then F is 1-Lipschitz
F : In

q→ Iq can be decomposed into two functions Fl : In
q→ [0,1]q and Fu : In

q→ [0,1]q such that
∀i : F(i) = [Fl(i),Fu(i)], i.e., Fl(i) gives the infimum of f (i) and Fu(i) gives the supremum of i. We
show that both Fl and Fu are 1-Lipschitz continuous:

• Fl(I) = inf
i∈I

f (i): Assume I = [l,u], since I is finite we can rewrite the operation as pair-

wise applications of min, i.e., min(f (l),min(f (l + 1
2q),min(f (l + 2

22), ...))). As per above
case 1e min is 1-Lipschitz. Similarly the composition of two 1-Lipschitz functions is also
1-Lipschitz, or in extension, a finite number of compositions.

• Fu(I) = sup
i∈I

f (i): max(x,y) is equivalent to 1−min(1− x,1− y) which is 1-Lipschitz by

above case 1c and 1e so proof follows in the same way as the Fl(I) case.

Submitted to:
QAPL 2017

c© Y.G. Dantas, T. Hamann, H. Mantel, and J. Schickel
This work is licensed under the
Creative Commons Attribution License.

Extended Abstract:
An Experimental Study of a Bucketing Approach∗

Yuri Gil Dantas
TU Darmstadt

Darmstadt, Germany

Tobias Hamann
TU Darmstadt

Darmstadt, Germany

Heiko Mantel
TU Darmstadt

Darmstadt, Germany

Johannes Schickel
TU Darmstadt

Darmstadt, Germany

<lastname>@mais.informatik.tu-darmstadt.de

1 Introduction
When a secret has influence on the timing of a program, an attacker can measure the execution time of
the program in order to learn some information about the secret. More specifically, this can be done
by sending ordinary inputs to the program and analyzing the time taken to execute the program. Tradi-
tionally, these attacks, namely Timing Side-Channel Attacks [2], are carried out against cryptographic
implementations [2, 13] and web applications [1, 6]. Indeed, there have been several attacks developed
against TLS protocol [2], AES [5] and RSA implementations [11], where researchers demonstrated the
feasibility of fully recovering the secret key.

Although several approaches [3, 14, 12, 8, 7] have been proposed in order to eliminate timing side-
channel attacks, the problem is still not solved, mainly due to practicality and effectiveness reasons. For
instance, implementations based on the static transformation [8] approach are not fully practical due to
the large performance penalty caused by the transformation. Moreover, dynamic transformation [7] is
not always effective as demonstrated in [4].

Eliminating timing side-channel attacks is challenging, as countermeasures should not only elimi-
nate these attacks by reducing the amount of information leakage from the program, but also should be
practical to use. With this in mind, another approach, namely Bucketing [14, 9], has been proposed.
Bucketing is a quantitative approach for reducing timing side-channel attacks by decreasing the number
of possible timing observations, while minimizing the performance penalty. Although Bucketing has
been shown to be sound, it has not been implemented to the best of our knowledge. In this paper, we pro-
vide an implementation of Bucketing at the application level. More concretely, we implement Bucketing
using a runtime enforcement tool and experimentally evaluate the effectiveness of our implementation
for reducing timing side-channel attacks. In summary, the contributions of this paper are two-fold:

• We implement Bucketing at the application level using a runtime enforcement tool. Our imple-
mentation is generic in the sense that it can be applied to any Java program with deterministic
timing behavior, which is a foundational assumption of Bucketing [14].

• We evaluate the effectiveness of our implementation. For this, we carry out several experiments,
with and without using Bucketing. In each experiment, we measure the running time of the pro-
gram for different secret input values. For all experiments, we observed a quantitative reduction
of information leakage from the program when using our implementation.

This paper is organized as follows. Section 2 introduces the concept of Bucketing. Section 3 explains
briefly how we implemented Bucketing using a runtime enforcement tool, and Section 4 contains our
experimental results. Finally, in Section 5, we conclude the paper by discussing future work.

∗This work has been funded by the DFG as part of the project Secure Refinement of Cryptographic Algorithms (E3) within
the CRC 1119 CROSSING.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 An Experimental Study of a Bucketing Approach

2 Bucketing Approach
Bucketing is a quantitative approach that allows one to discretize the execution time of a program in a
way that the results of the computation are only returned at a small number of fixed points in time [14, 9].
That is, Bucketing aims to split all critical output values of a program into buckets such that each output
has to wait until the enclosing bucket’s upper bound time to be released.

input

4

3

2

1

execution

4

3

2

1

b1 b2

tb1 tb2

without bucketing with bucketing

t0 t1t0 t1 t2 t3 t4

execution time
of secret 1

secret

time

input
secret

execution
time

execution time of
secret 1

Figure 1: Illustration of a program’s timing behavior
when releasing sensitive outputs (without Bucketing
on the left and with Bucketing on the right).

Instead of describing the complete detail of
Bucketing, which we refer to [14], we describe its
behavior by means of an example (depicted in Fig-
ure 1). Assume a program that leaks sensitive in-
formation when releasing output events such that
an attacker can make (four) different observations
about the secret just by measuring the response
time of the program. Next, assume that two buck-
ets are defined, b1, with an upper bound time of
tb1 , and b2, with an upper bound time of tb2 , where
the execution time of secret input 1 is allocated
into b1 and secret inputs 2, 3 and 4 into b2. As
a result, whenever this program runs an operation
wrt. secret input 1 (similar for inputs 2, 3, and 4),
the output event will be held by b1 until the execution time reaches tb1 . Considering this scenario, the
number of timing observations are reduced from four to two, and consequently the power of the attacker
to gain information about this secret is also reduced. Moreover, in comparison to static transformation,
Bucketing also keeps the performance overhead of such a program minimal. This can be clearly seen on
the right side of Figure 1, since not all secret inputs were allocated to the worst-case execution time (i.e.
tb2).

3 Bucketing Implementation
We implement Bucketing using a runtime enforcement tool, namely CliSeAu [10]. CliSeAu has a mod-
ular architecture consisting of four components: interceptor, coordinator, enforcer and local policy. For
this particular implementation we just focus on the interceptor and enforcer. Interceptor is a component
that performs the activity of intercepting attempts of the program to perform security-relevant events and
enforcer is a component that enforces a countermeasure on the target program. For instantiating CliSeAu
for Bucketing, one needs to define the sensitive methods (i.e. code that operates on secret data) of the
target program such that CliSeAu can track each call of these methods. Besides, it is also required to
instantiate the enforcer by defining the amount of buckets and their respective sizes.

Program Interceptor Enforcer

intercepts an event

adds the event into the bucket

releases the event from the bucketreleases the event from the bucket

Figure 2: Simplified Diagram of Bucketing imple-
mentation

For the sake of space, we only present the
sequence diagram (depicted in Figure 2) that de-
scribes part of the flow events of our implementa-
tion. Firstly, the interceptor intercepts a security-
relevant event whenever a sensitive method call is
performed by the program. The interceptor sets
the initial time of the event and forwards such
an event to the enforcer. The enforcer can spec-
ify code to execute before and after the security-
relevant event. In our implementation, we specify

Y.G. Dantas, T. Hamann, H. Mantel, and J. Schickel 3

Bucketing for being executed after a security-relevant event such that the enforcer only releases the event
when the upper bound time of the current bucket is reached.

Our Bucketing implementation is generic in the sense that it can be (easily) applied to any Java
program with deterministic timing behavior, which is a foundational assumption of Bucketing. For more
details about CliSeAu’s genericity, we refer to [10].

4 Experiments
Our goal is to experimentally evaluate the effectiveness of our Bucketing implementation upon reducing
timing side-channel attacks. For the sake of simplicity, we have implemented a simplified example of a
client-server application where legitimate clients authenticate (for integrity reasons) their requests into
the server using Message Authentication Code (MAC). For this, both legitimate client and server share
a common secret key, which is required to build a valid MAC for arbitrary requests. In order to verify
a MAC, our server builds its own MAC and compares with the MAC sent by the client. Finally, this
comparison is performed by a string comparison method, where we intentionally add delay in four parts
of the comparison in order to have a clear timing difference between the responses1. As a result, an
attacker can explore this timing difference in order to construct a valid MAC. Our assumption is that if
the time response of an input1 takes longer than an input2 the attacker is closer to guess the correct MAC.

We carry out our experiments as follows. Firstly, we explore the timing side-channel vulnerability of
our server by sending four distinct secret inputs, namely shortest, middle, longest, and correct. The first
three secret inputs (shortest, middle and longest) mean that the first, the middle, and the last character of
the MAC are, respectively, incorrect. Moreover, the correct input means that all characters are correct.
Figure 3a shows the results of this experiments when not using Bucketing. We can clearly observe
differences in the running time values that correspond to four different secret input values. This gives us
a hint that an attacker can adaptively infer the expected MAC value by sending arbitrary MACs.

(a) Running time when Bucketing is not applied (b) Running time when Bucketing is applied

Figure 3: Running time values that correspond to four secret input values

Secondly, we investigate the effectiveness of our implementation upon reducing the timing-side chan-
nel vulnerability in our server. For this, we define two buckets of size 3 and 8 ms with the goal of de-
creasing the power of a potential attacker by reducing her number of timing observations, while taking
performance into account, since only one bucket would suffice, in theory, to eliminate the vulnerability.
Figure 3b depicts the running time values that correspond to four different secret inputs when Bucketing
is applied. On one hand, we can observe that the running time values for the shortest input are always
released at around 3 ms (i.e. the upper bound size of the first bucket). On the other hand, we can observe
that the other three running time values are overlapping at around 8 ms. Therefore, in contrast to 3a,

1This intentional delay simulates programs where the timing differences between the observations are in the range of a few
milliseconds rather than nanoseconds. Attacks on programs in this timing range have been shown in e.g. [6].

4 An Experimental Study of a Bucketing Approach

we cannot observe (much) difference in the running time values that correspond to these three secret
input values. We consider these results promising, as they hint on the fact that our implementation of
Bucketing is indeed effective in reducing the timing side-channel in our server.

5 Summary and Future Work
This paper provides an implementation of Bucketing at the application level, which is built on our tool
for dynamic enforcement of security requirements in Java programs. We carry out a number of experi-
ments for demonstrating its effectiveness. In summary, our experimental results give us a hint that our
implementation is effective to reduce timing side-channel attacks. There are many directions for future
work, e.g., we are currently investigating how precise and accurate our implementation is, i.e. how close
to the actual bucket our implementation releases the information. We are investigating how effective our
implementation is to reduce the capacity of timing side-channels [15]. Finally, we are also interested in
applying our implementation to a more realistic scenario, where we do not make simplifying assumptions
wrt. running time.

References
[1] Martin R. Albrecht & Kenneth G. Paterson: Lucky Microseconds: A Timing Attack on Amazon’s s2n Imple-

mentation of TLS. In: Advances in Cryptology - EUROCRYPT 2016.
[2] Nadhem J. AlFardan & Kenneth G. Paterson: Lucky Thirteen: Breaking the TLS and DTLS Record Protocols.

In: 2013 IEEE Symposium on Security and Privacy, SP 2013.
[3] Aslan Askarov, Danfeng Zhang & Andrew C. Myers: Predictive Black-Box Mitigation of Timing Channels.

In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010.
[4] Michael Backes & Boris Köpf: Formally Bounding the Side-Channel Leakage in Unknown-Message Attacks.

In: Computer Security - ESORICS 2008.
[5] Daniel J. Bernstein (2005): Cache-timing attacks on AES. Technical Report.
[6] Andrew Bortz & Dan Boneh: Exposing private information by timing web applications. In: Proceedings of

the 16th International Conference on World Wide Web, WWW 2007.
[7] Benjamin A. Braun, Suman Jana & Dan Boneh (2015): Robust and Efficient Elimination of Cache and Timing

Side Channels. CoRR abs/1506.00189.
[8] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere & Bjorn De Sutter: Practical Mitigations for Timing-

Based Side-Channel Attacks on Modern x86 Processors. In: 30th IEEE Symposium on Security and Privacy.
[9] Goran Doychev & Boris Köpf: Rational Protection against Timing Attacks. In: IEEE 28th Computer Security

Foundations Symposium, CSF 2015.
[10] R. Gay, J. Hu & H. Mantel (2014): CliSeAu: Securing Distributed Java Programs by Cooperative Dynamic

Enforcement. In: Proceedings of the 10th International Conference on Information Systems Security (ICISS),
LNCS 8880, Springer, pp. 378–398.

[11] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth & Berk Sunar: Cache Attacks
Enable Bulk Key Recovery on the Cloud. In: Cryptographic Hardware and Embedded Systems - CHES 2016.

[12] Emilia Käsper & Peter Schwabe: Faster and Timing-Attack Resistant AES-GCM. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2009.

[13] Paul C. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In:
Advances in Cryptology - CRYPTO ’96.

[14] Boris Köpf & Markus Dürmuth: A Provably Secure and Efficient Countermeasure against Timing Attacks.
In: Proceedings of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009.

[15] Claude E. Shannon: A mathematical theory of communication. Mobile Computing and Communications
Review, 2001.

Submitted to:
QAPL 2017

c© Pranav Ashok, Krishnendu Chatterjee, Przemysław Daca, Jan Křetı́nský and Tobias Meggendorfer
This work is licensed under the
Creative Commons Attribution License.

Mean-payoff objectives for Markov Decision Processes

Pranav Ashok1, Krishnendu Chatterjee2, Przemysław Daca2,
Jan Křetı́nský1 and Tobias Meggendorfer1

1Technical University of Munich, Germany
2IST Austria

Markov decision processes (MDPs) are standard models for probabilistic systems with non-determi-
nistic behaviors. The mean-payoff objective provides a mathematically elegant formalism to express
performance related properties. The value-iteration (VI) approach provides one of the simplest and
most efficient algorithmic approaches for MDPs with other properties (such as reachability objectives).
Unfortunately, the straightforward VI approach does not work for the mean-payoff objective in MDPs.
In particular, there is no stopping criterion which can give guarantees that the solution obtained through
VI is ε-close to the optimal solution.

In our ongoing work, the contributions are threefold. (i) We refute a conjecture (presented in [4])
related to stopping criteria for mean-payoff objectives in MDPs; (ii) we present two practical algorithms
for the mean-payoff objective in MDPs based on VI; and (iii) we present experimental results showing
that our approach significantly outperforms the standard approaches on several benchmarks.

A core idea which we exploit is the fact that for infinite horizon objectives like mean-payoff, only
rewards which can be obtained in maximal end-components (MECs) of the MDP matter. Keeping this in
mind, we present the following two algorithms.

In the first, we show that a combination of local VI in MECs and VI for reachability objectives can
provide approximation guarantees. The stopping criterion is known [4] for VI in communicating MDPs,
the class of MDPs in which for every pair of two states si and s j, there exists a deterministic strategy
under which si is reachable from s j. We first identify different MECs in the MDP and then use the fact
that a MEC can be identified with a communicating MDP, to run VI on it until the desired precision
is achieved. Next, we collapse these MECs into their representative states and reduce the problem of
solving the mean-payoff objective to a problem of computing the reachability objective on a transformed
MDP. The algorithm presented in [1], which is a version of asynchronous value iteration using sampling,
allows us to compute the reachability objective with the desired guarantees.

In the second, we present an anytime algorithm based on the bounded read-time dynamic program-
ming (BRTDP) approach [3]. In the BRTDP approach, paths are repeatedly sampled in the MDP directed
by a heuristc, and VI is applied only for the states on these paths. Moreover, upper and lower bounds
are maintained for each state and the VI operator is applied on them separately. The difference between
the upper and lower bounds for every state is a natural measure of error. In addition to this standard
approach, we equip our algorithm to detect when a path gets stuck in some end-component, in the lines
of [1]. The end component is then collapsed into a representative state in a collapsed MDP, but unlike
earlier, we do not wait for the stopping criterion to be satisfied while running VI on the end-component.
The core idea of this approach is that if the probability of reaching a state (or a MEC representative
state) is quite low, then we might not need to explore it (or obtain an ε-precise solution in the MEC).
Our algorithm is able to detect when the solution in a MEC needs to be refined. It continues alternating
between propagating bounds in the collapsed MDP and refining the values in the MECs through running
VI locally. Furthermore, the biggest advantage of this algorithm, as in BRTDP, is that not all states need

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Mean-payoff objectives for Markov Decision Processes

to be explored in order to get approximation guarantees.
Finally, we present the results of our benchmark against MultiGain [2], the only tool we are aware

of, which can solve mean-payoff objectives with guarantees. Our results show that depending on the
underlying structure of the MDP, our approaches behave comparable in performance. But on some large
models, the second approach is able to obtain a solution within seconds whereas standard methods runs
out of memory. In every non-trivial example, both our methods significantly outperform the Linear
Programming based approach of MultiGain.

The manuscript of this work has been recently submitted.

References
[1] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretı́nský, Marta Z. Kwiatkowska,

David Parker & Mateusz Ujma (2014): Verification of Markov Decision Processes Using Learning Algorithms.
In: ATVA, Springer, pp. 98–114, doi:10.1007/978-3-319-11936-6 8. Available at http://dx.doi.org/10.
1007/978-3-319-11936-6_8.

[2] Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt & Antonı́n Kucera (2015): MultiGain: A Controller
Synthesis Tool for MDPs with Multiple Mean-Payoff Objectives. In: TACAS, pp. 181–187, doi:10.1007/978-
3-662-46681-0 12. Available at http://dx.doi.org/10.1007/978-3-662-46681-0_12.

[3] H. Brendan McMahan, Maxim Likhachev & Geoffrey J. Gordon (2005): Bounded real-time dynamic pro-
gramming: RTDP with monotone upper bounds and performance guarantees. In: ICML, pp. 569–576,
doi:10.1145/1102351.1102423. Available at http://doi.acm.org/10.1145/1102351.1102423.

[4] Martin L. Puterman (2014): Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons.

http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1007/978-3-662-46681-0_12
http://dx.doi.org/10.1007/978-3-662-46681-0_12
http://dx.doi.org/10.1007/978-3-662-46681-0_12
http://dx.doi.org/10.1145/1102351.1102423
http://doi.acm.org/10.1145/1102351.1102423

	preface
	programme
	invited1
	Introduction
	Preliminaries
	The HyPro Library
	Reachability Analysis based on Variable Set Separation
	Experimental Results
	Conclusion

	paper1
	Introduction
	Related Work
	Markov Chains and Markov Decision Processes
	Parametric MCs and MDPs
	Classes of Optimal Schedulers
	Parametric Labyrinths
	Implementation and Experiments
	Experiments

	Discussion

	paper2
	Introduction
	Preliminaries: System Types and Decision Problems
	Design and Usage
	Design
	The Semiring Generator
	The Analysis Tool

	Usage
	The Semiring Generator
	The Analysis Tool

	GUI Overview of Paws
	The Semiring Generator
	The Analysis Tool

	Conclusion, Future Work and Related Work

	paper3
	Introduction
	Methodology
	Queries

	The Properties of Interest in our Study
	Property 1: Uniqueness
	Property 2: Immutability

	Approximating Pseudo Static Properties from Trace Data
	Results
	Uniqueness and Heap-Uniqueness
	Unique, Stack-bound, and Heap-Unique Fields
	Unique, Stack-bound, and Heap-Unique Classes

	Immutability
	Immutable Fields
	Immutable Classes

	Summary
	Uniqueness
	Immutability

	Threats to Validity
	Related Work
	Conclusion and Future Work

	paper4
	Introduction
	Background
	Nondeterministic probabilistic transition systems
	Strong probabilistic trace equivalence
	Weak probabilistic trace equivalence

	Trace metrics
	The Kantorovich and Hausdorff lifting functionals
	Strong trace metric
	Weak trace metric

	Modal logics for traces
	Logical characterization of relations
	Logical characterization of trace metrics
	`39`42`"613A``45`47`"603AL-characterization of strong trace metric
	`39`42`"613A``45`47`"603ALw-characterization of weak trace metric

	From boolean to real semantics
	Concluding remarks

	invited2
	paper5
	Introduction
	Summary on PiFF and FlyFast
	PiFF
	FlyFast

	A revised translation
	A simplified language for Bisimulation-based optimisation
	Bisimilarity and State-space Reduction
	Example
	Conclusions
	Appendix

	paper6
	Introduction
	Preliminaries
	Fuzzy set
	Fuzzy logic

	Fuzzy data-flow analysis
	Lazy code motion
	Type-1 static analysis
	Type-2 static analysis
	Hybrid analysis

	Related work
	Conclusion

	short1
	Introduction
	Bucketing Approach
	Bucketing Implementation
	Experiments
	Summary and Future Work

	short2

